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PREFACE 

The CYBER 200 Applications Seminar, held on October 10-12, 1983, in Lanham, 
Maryland, under the sponsorship of NASA/Goddard Space Flight Center and 
Control Data Corporation, is the second of its kind. These proceedings comprise 
the majority of the papers presented at the meeting. Papers for the seminar 
were selected on the basis of showing a broad distribution of applications for 
which the CYBER 200 may be well suited. These ranged from problems in 
meteorology to problems in economics. A breakdown of the disciplines 
represented is shown below. Some of the papers actually could fall in more than 
one category, but only one is indicated for each. 

Papers 

Meteorology/Oceanography 
Chemistry 
Math Algorithms for 205 
Fluid Dynamics 
Monte Carlo Methods 
Petroleum 
Electronic Circuit Simulation 
Biochemistry 
Lattice Gauge Theory 
Economics 
Ray Tracing 

5 
4 
3 
3 
3 

; 
1 
1 
1 
1 

In the first seminar held in August 1982, it was evident that much work was yet to 
be done in learning to use a vector machine. At that time, only a few of the 
CYBER 205% had been installed. One year later, we see numerous examples of 
good vectorizing work carried out by still relatively inexperienced vector com- 
puter users. Clearly, in time we shall see a great deal more optimization and 
effective performance becoming routine. 
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Aileen Foreman 

Mathematical Algorithms to Hsximize Performance in Numerical Weather Prediction 

Introduction 

Numerical weather prediction models, which involve the solution of non-linear 
partial differential equations at point6 on an extensive three-dimensional grid, 
are ideally suited for processing on rector machines. It wa6 logicsl therefore 
that the new global forecast model to be implemented at the Heteorological Office 
should be written in vector code for the Cyber 205. 

In order to achive full efficiency and to reduce 6torage requirement8 the 
model used 32-bit arithmetic which had been found to provide high enough precision. 
Unfortunately, however, the trigonometrical and logarithmic function6 provided 
by CDC could only handle 64-bit vectors and, although written in efficient scalar 
code, did not take advantage of the epecid facilities of a rector processor. It 
wa6 therefore necessary to rewrite the function6 in rector code to handle both 
32 and 64-bit vectors. There was also no bslf-precision compiler avsilable for 
the Cyber 205 at that time and so the functiond, like the model, had to mske 
extensive use of the "specisl call" syntax. Thie made the code more difficult to 
write but it allowed much greater flexibility in that it becsme possible to accesd 
the exponent of a floating-point number independently of its coefficient. 

This paper presents a description of the technique6 and it mammarises the 
results which were achieved. One example, the logarithmic function, is treated 
here in detail to illustrate the general approach to the problem. 

Derivation of louaritbms 

The coding for the logarithm function illustrate6 both the use of the way in 
which floating-point numbers are stored and the use of linked triads to gain 
additional speed. 

To calculate fl= JpDL) we divide the range of x into two, the first of 
which is 

We first write the value of x in a way which can be related to the format 
of stored floating-point numbers. Thus, introducing two new unkuowns n and d, 
n being 6x1 integer and $4 "<I 1 we msy write any number as g2 = z*bJ. 

Now the Cyber 205 stores the floating-point number as 

. 2 ““9 wJj$+fZt = 2? z’. k 
factor ZJ 

where the 
is introduced by normslisation, 

Since for logarithms, x must always be positive, for 64-bit number8 bit 17 
will be on, 60 j = 46 and for 32-bit numbers bit 9 will be on, so j = 23. 

Then relating the two, we have n=cxp+~’ 

3 



As 6n exsmple, if x = 2.0 as a &-bit normalized value 
7: = 2’+I 2+L 

60 from the above formulae 

/I= - cc++4- I and 3Sl.O 

Here, we can obtain the values of n and ti very easily as we can access 
the exponent and coefficient of a number by using special cdlls. 

The next step is to convert the functions into a suitable form for vectorizatiom 
end this involves the introduction of a new variable 

time as W . 

From the original definition 

b) For the remaining values of x 9 within the range @ 
vslue of * is defined by: 

-<aa ' the 
2 

60 that Zr Ltx 
I-8 

In each ca6e, the problem 
is easily done by replacing it 
degree of precision: 

which c6n be computed at the 66me 

then become6 one of vectorizing which 
with a truncated series which gives the required 

where the constants c, are known. 

Then log, (+z = 
f ) 1-t 

Despite its complicated appearance, this reduce6 to eight vector operation6 
consisting of a multiplication, six linked triad6 and a final multiplication 
by E thus 

4 



Multiplication 

First triad = 

Second triad = 

Third triad = 

to give t2 

VI = c,z=+ c5 

v2 = V\2Cct 

v3 = v2 AC, etc. 

Tests, using the 1.5 compiler, and a range of,vector len ths gate the 
following results, with times being expressed in units of IO- pf seconds. 

Vector length 50 loo 200 500 moo 2ooo yJO0 
CTX logarithm6 .:” -55 1.01 2.00 3.66 7.04 21.50 
64-bit vector .47 .61 :;8 1.12 2.16 3.87 7.47 20.75 
logarithm 
32-bit vector .53 .57 .65 .82 1.34 2.20 3.99 9.66 
logarithm 

The first point to notice here is that the full increase in speed for 
32-bit vector8 is only achieved with large vector lengths. Because of the 
overheads aseociated with the initiation of vector instructions, this is not 
unexpected and is common to all of the functions to be described. What is 
unexpected is that no improvement in speed was achieved for our &-bit function 
vhen compared to the CDC function. In this respect, this function is unique 
among all those treated in this paper. However, the original aim of producing 
a 32-bit version has been successfully achieved. 

Exp0aentieJ.s 

The exponential function is derived from the standard formula 
x 

e l 2 
tr. pa $16 

chosen to make use of special calls. k, q and f 
are defined as follovs: 

If n= Lhk 16~ 

L 1 lcgLP 

then e 
It= Lrab 2 [ I 

and rncti module 16 for =7/O 

and tr= ht n 
I I 

,I and m= 16-n module 16 for SK0 
rd 

6= 14X -n 
c ) ig 

Now, since m Ojti<IL 2 
ml1fL 

is integer and , the factor is 
obtained from a look-up table of 16 elements of known values, using the "special 
call" instruction Q8VXTOV. 

Having found the integer h from the above formula, and R mllL from the 
look-up table, to obtain the value Zh. ;L*"'= ;tY+mmlrb 
exponent part of 2mr“ by using special calla. 

5 

we add k to the 



The factor, $/ 16 is given by 

+ 
= P3p+J2s p,$+ po 

-ht' - /r+ p*$ - pc'l 
where f ie obtained as above and pJ?IJ b are known constants. 

Then, to obtain e * all we need is a final multiply of 2"“ by 2 
WqtL 

-4 The following results were achieved, times again being given in units of 
10 seconds. 

vector length 70 yl loo 200 500 loo0 2000 5000 
CDC exponential 035 07 .93 1.44 2.86 5.25 10.52 33.36 
64-bit vector .47 .6 .78 1.14 2.29 4.15 7.97 22.75 
exponential 
32-bit vector .47 .56 -68 .93 1.85 3.14 5.85 14.62 
exponential 

Here, for a vector length of so00 the 32-bit exponential routine is only 
40% faster than the 64-bit routine because of the use of the "special call" 
Q8VX!FOV. However the 64-bit routine has achieved a considerable speed-up over 
the CDC exponential. 

The Hyperbolic functions 

The routines to calculate the hyperbolic functions 
and y= bmhx use the following formula, 

p w&x, yz5Az 

cash x : 1 &." + e 
-zc 

- 
2 ( ) 

The calculation of a" is as described earlier. 
little extra work is required to obtain (A~ 

During the calculation of e." , 
which avoids the need to call the 

exponential routine twice, 

The hyperbolic sine is given by 

sinh x. : i (2 -e-x) 

and sinhz z for ISI< 0.5 

Here the two distinct cases are treated independently, so that we are dealing 
with shorter vector lengths, and then the results are merged together at the end 
of the routine. The polynomial expansion of sinh x can be performed in Beven 
vector instructions, by using linked triads, 

The hyperbolic tangent is given by 



for 0-a < IaLl, 18.0 

for # 7 16.4 

for xz < - M-0 

Again, the diptinct case6 are treated independently 60 that we are dealing 
with shorter rector lengths , and again we can u6e linked triads when calculating 
the polynomial expansion of CanhaL . 

The timings of the hyperbolic sine and hyperbolic tangent routines are data 
dependent, but-some sample-timings are 
units of 10s4 seconds. 

vector length 
hyperbolic 
cosine 
64-bit vector 
32-bit vector 
hyperbolic 
6i.d 
64-bit vector 
32-bit vector 
hyperbolic 
tangent 
64-bit vector 
32-bit vector 

10 50 loo 

‘-Oa 3 l . :z .88 

075 
.72 2; :*g . 

-66 .87 q-15 
.64 .73 .89 

1.68 3.33 6.01 
1.21 2.30 3.66 

I;.$ 
. 

co;; 
. 

rector lengths we do not hare a great 
for longer vector lengths we are approaching - 

Again, we see that for very short 
advantage by using 32-bit vectors, but 
twice the speed of the &-bit functions. There were no CDC function6 available to 
compare vith our results. 

given Glow. All times are expressed in 

200 500 lom 2ooo y300 

1.68 3.45 6.41 
1.27 2.44 4.44 

I;.;; 
. 

:;A; 
. 

1.96 3.88 7.27 
1.48 2.74 5.00 

‘;.f; 
. 

;;.8$ 
. 

Sines and cosines 

The trigonometrical functions, 9% sinx 
the polynomial expansion of rinx 

and s(=cobZ are calculated from 
so that we can make use of linked triads 

again. First the input argument needs to be reduced module Lfl . This is achieved 
by 

letting 4,s 2 1x1 
7r 

then put 'L=c,-cI. so that *~*'I. 

and Lz=*, modulo 4 

so Sk(X) is given by 
SEflXS sin t for krO 

sin (I - a) for k=\ 
-sin l for h= 2 

- s&l (I -;i) for k=3 

7 



where s;re = 
c 

znr 1 
Cm? for 

nro 
and 

Because the values C+ and Cs are too 
32-bit function results: 

'Ihe cosine function is given by 

64-bit function 

the constants 

small to affect 

Cft3 are known. 

the accuracy of the 

32-bit vector function 

cosx = 5bil where 5v,($tZ.) is calculated as above. 

If it is known that the input operand, x, is always between -Ul- and +Zr 
radians, such work can be left out of the routine; 

for as above let 

So for k= +1= 0 , 

for 4=t,= I, 

for hzr,:Z I 

for h=+,= 3, 

f, = 2 I=1 
T 

and I;. = ;nb 

Thus we have two sets of functions, one set to calculate the sine and cosine 
of any angle expressed in radians, and the other to calculate the sine and cosine 
of angles between -or and +2r radians. 

The polynomial expansion of sin(z) can be calculated in ten vector instruction8 
including eight linked triad instructions'for the 64-bit function and in eight 
vector instructions using six linked triad instructions for the 32-bit functions. 

10 
-4 Tests gave the following result8 with times given are expressed in units of 

seconds. 
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vector length 10 50 
m SiXlO 015 .5 
64-bit rector .49 .59 
sine (all mglem> 
52-bit vector .42 .46 
sine (all angle81 
64-bit vector .37 .44 
sine (-Hf 

to +z7r 1 
32-bit rector .?A '.37 
sine ( -Lr 
to +nr 1 

rector length 
CDC cosine .P 
2,:: yeeor .57 .60 

engles) 
32-bit vector .69 .47 
cosine (all 
angles) 
64-bit vector .72 .45 
cosine ( -rn- 
to +;z7T > 
32-bit vector .67 .37 
cosine (-AT 
to 4-afl ) 

100 
.64 
.72 

052 

953 

.41 

100 
.68 
.73 

051 

045 

-41 

200 500 ~~ ~~ 5ooo 
.9? 1.72 3.07 6.13 22.98 
-98 1.74 3.02 5.59 A4.98 

.63 .9a 1.57 2.76 6.35 

.72 1.27 2.20 4.07 10.04 

050 l 75 A.20 2.09 4.78 

200 500 1ooo mx3 5ooo 
.99 2.08 3.29 6.68 23.59 
.99 1.87 3.19 5.94 16.00 

.63 1.0 1.70 

.74 1.42 2.40 

050 .77 1.37 

2.94 6.95 

4.45 11.14 

2.31 5.51 

Thus, we can see that ve need a vector length of 5IXl to 1000 before our 
64-bit routines for all angles are faster than the CDC supplied routines, but 
that our 52-bit routine8 for restricted angles between -ZlT and *aw are 
over four time8 as fast a8 the CDC routine8 for rector length8 of 5CCC. 

Similarly for the trigonometrical function, bz tax: we have supFlied 
tvo Set8 of functions, one set to calculate the tangent of any angle eXpreSSed 
in radian8 in both 64-bit8 and the other to calculate the tangent of angles 
between -277 and tnn- radian8 in both 64-bits and 52-bits. The tangent 
function is calculated using a polynomial expansion of tan(x) to make use Of 
lialced triada. The calculation is performed by first reducing the argument 
module fl 

then 9 'r, -*a 80 thrt ogr41 

Nowlet 5%~~ modulo 8, putting k3 if O$SC3 
and k=S-4 if 4_LSSF 

9 



tar-&g is now given by 

tan(%)= tm Cal 

I0 
where k&b(z) = 

z c, a-' 
-0 

for k-0 

for k--l 

for k==L 

for k=3 

to the required degree of precision. 

Again, if it is lmovn that the input operand is always between -Zr and 
+ZT radians, we can vrite: 

In this case 5rTa mochalo 8 t rr 

h-., where 04 frr3 
and t* r,- j where ++ r,sz 

and the calculation continues as before. 

The polynomial expansion of tan(z) is calculated in fourteen vector 
instructions using tuelte linked triads. 

The resulting timing8 of tests are given below, eXpreSSed in units of 10 
-4 

8eCOnd8. 

vector length 
.;i .E 

100 200 500 loo0 2000 !mo 
CDC tangent .91 1.47 2.61 4.71 
6J+-bit vector .90 .82 -99 1.35 2.55 4.48 

;.fg 
. 

:"-;; 
. 

tangent C&l1 
angles) 
32-bit vector .96 .78 .90 1.14 1.92 3.21 5.59 13.29 
tangent (all 
angles) 
64-bit vector .67 .76 -93 1.25 2.36 4.14 7.74 20.64 
tangent (- mr 
to +-UT ) 
32-bit vector -67 .70 -80 .99 1.76 2.94 5.15 11.98 
tangent ( -UT 
to -al-r 1 

10 



These rtmrlts 6hou that we need a vector length of only about 200 before 
our 64-bit tangent function for all angles is faster than the CDC routine, and 
that our 32-bit tangent function for restricted angles between -2p and 

+X3- radian8 is well over twice a8 fast as the CDC routine. 

The Arctanqent function 

The arctaagent function J= L&M. cx) is again calculated from a polynomial 
expansion 80 that we can use linked triads. The calculation is performed a8 
fOuOW8: 

For 1x1 .n +I 

and for /xl< a+/. 

let LUSI 
1x1 

let La= Ix/ 

Change the variable to z, defined by 
a= 0-a 

& +d 
where, a is Chosen so that z = 1.0 when 34z+I 

Under this condition, a = (I -a)44 -2.n * , and is therefore a 
Constant. 

Then atan is given by 

atan(r>=atan(z>+atan(a) 

Here, atan is a constant and need only be calculated once, and we may replace 
atan by the t cated series: 

dim (*I = 3 
amt 1 

blz 
m=0 

For Irl >,n+r, 

and for xeo , a& (z) = - ah Ix) 

Atan can be calculated in ten vector instructions, eight of which are 
linked triad instructions. The results are in the range -F to +r (not 
inclusive). z 5 

-4 The following results were achieved, times again being given in units of 
IO seconds. 

vector length 
cnc arctangent .g 1:: l?E 4% 3% IE; 4z 
64-bit vector -52 .66 .92 1.91 3.07 5.77 15.23 
arc tangent 
32-bit vector -43 .49 -55 .69 1.10 1.79 3.34 7.27 
arctangent 

These results are 8pectacular, in that the 32-bit arctangent function is 
over six times as fast as the CDC routine and even the 64-bit version has given 
a threefold increase in speed. 

11 



Derivation of arcsine and arccosine fbnctionn 

The final trigometric routines to be considered calculate the arcsine and 
arccosine of x. The calculations are performed as follows, 

for O$Xj '/z , let a=* so that asin = asin 

and for *cxg , let t= (1 of)" and asin = r- 2&U Ia) 
z 

for -I SX<O ( asin = asin end the same substitutions are used. 

Now the new variable, z, must be between zero and 0.7 so we may write 

to the required degree of 

The arccosine function is derived from the arcsine using the substitution 

aco6SIx) I 
T-~~ix~ 

The polynomial expansion of asin is calculated in thirteen vector 
instructions, eleven of vhich ace linked triads. The range of the results for 
arccosine is -zr to +_n inclusive, and for arccosine is 0 to7 inclusive. 

L t 

The following results were achieved , with times expressed in uuits of 10 
-4 

seconds. 

vector length 
-lo ii 'O" 

200 5w lcxx 2000 5ooo 
CDC aecsine 

:;2 :61 
.87 1.27 2.6 

64-bit vector .75 1.04 2.02 
arcsine 
32-bit vector -54 .57 -58 .73 1.37 2.25 3.91 9.11 
arccosine 

vector length 10 50 loo 200 px 1000 2000 5coo 
CDC arccosine .26 .68 .89 1.27 2.41 4.35 
64-bit vector .51 .61 ,76 1.05 1.95 3.44 

;.;t 
. 

$3; 
. 

arccosine 
32-bit vector .48 .5L, .61 .76 1.25 2.07 3.66 8.59 
arccosine 

Here our 32-bit functions are over three times as fast as the CDC routines, for 
vector lengths of 5000. 

Conclusion 

The trigonometrical and logarithmic functions , as provided by CDC up to and 
including version 2.0 of the compiler are, in general, not very efficient. At 
the Meteorological Office, we found it necessary to hand-code these functions in 
vector syntax to take full advantage of the facilities of the Cyber 205. For the 
32-bit versions, which have a high enough precision for most of our purposes, 
speed increases of up to six times were obtained and even for our 64-bit versions, 
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increases of'up to three times are possible. Hovever, CDC have undertaken to 
proride fully rectorized versions of the trigonometrical andlogarithmic functions 
in both 64-bits and 32-bits by release 2.1 of the compiler. 

The functions described were written in the "special call" syntax because 
of compiler limitations and the difficulties associated with this were partly 
offset by the special features vhich vere then available. Users with the 2.0 
compiler could find that the extra facilities provided by the "special calls" 
do not overcome the difficulties involved with this syntax and that coding 
explicitly in the RXTHAN vector syntax achieves sufficient vectorization for 
their ova purposes. 
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ABSTRACT 

The complete global specification of the state-of-the- 
atmosphere on a daily or more frequent basis is required for 
numerical weather forecasting. Although the number of 
atmospheric variables required are small, namely, temperature, 
winds, moisture and surface pressure, globally and throughout 
the atmosphere, no single space-borne instrument is able to 
meet these requirements at the desired degree of accuracy and 
coverage. As a result, investigators have proposed to NASA a 
number of composite systems with differing limitations in 
accuracy and coverage under different atmospheric conditions. 

Because of the extreme expense involved in developing and 
flight testing these instruments, an extensive series of 
numerical modeling experiments to simulate the performance of 
these meteorological observing systems have been performed on 
the CYBER 205. The studies compare the relative importance .of 
different global measurements of individual and composite 
systems of the meteorological variables needed to determine the 
state of the atmosphere. The assessments are made in terms of 
the systems ability to improve 12 hour global forecasts. Each 
experiment involves the daily assimilation of simulated data 
that is obtained from a data set we call "nature." This data 
is obtained from two sources: first, a long two-month general 
circulation integration with the GLAS 4th Order Forecast Model 
and second, global analysis prepared by the National 
Meteorological Center, NOAA, 
twice daily. 

from the current observing systems 
More than two dozen experiments representing 

different possible configurations were carried out and 
analyzed. The experiments extend over a typical winter ,month, 
February, and successive 12 hour forecasts are made from the 
analysis twice daily. Thus, statistics ‘are compiled from a 
total of 56 forecasts for each experiment. 

This voluminous number of experiments would have taken over a 
year on a dedicated 24 hour per day allocation on an Amdahl 
V-6. The study was completed in less than a month on an as 
available basis on the Cyber 205 at the NASA High' speed 
Computing Facility. 
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Operational Numerical !&leather Prediction on the Cyber 205 at 

the National Meteorological Center 

Dennis Deaven 

NOAA/NWS 

Washington,D.C. 

The Development Division of the National Xeteorological Center (NHC) 

has the responsibility of maintaining and developing the numerical 

weather forecasting systems of the center. Because of the mission of 

NX these products must be produced reliably and on time twice daily 

free of surprises For forecasters. Personnel of Development Division 

are in a rather unique situation. We must develop new advanced techniques 

for numerical analysis and prediction utilizing current state-of-the-art 

techniques, and implement them in an operational fashion without 

damaging the operations of the center. 

In the past, modifications have been made to the operational job 

suite without adequate testing and evaluation because computational 

resources were not available to produce enough case studies for evaluation. 

Eopefully, with the computational speeds and resources now available from 

the Cyber 205, Development Division Personnel will be able to introduce 

advanced analysis and prediction techniques into the operational job 

suite without disrupting the daily schedule. 
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The operational job suite prior to the installation of the Cyber 

205 contained four major components: 1. A barotropic numerical model 

extending over the Northern Hemisphere giving forecasters an early look 

at the new synoptic situation immediately after data collection at the 

start of the twice daily operational cycle. 2. A Limited Fine Mesh 

(JXM) primitive equation numerical model extending over the North 

American continent. The LFM is started about 1 hour 45 minutes after 

data collection producing numerical guidance for use by forecasters 

when they make their 12 to 48 hour forecasts. 3. A global primitive 

equation numerical model using a spectral representation to produce 

numerical guidance for use by forecasters in the 2 to 5 day range. 

This model is started at about 4 hours after each twice daily collection 

of atmospheric data. 4. A global data assimilation cycle is started 

about 10 hours after data collection and is used to produce the first 

guess fields for the next synoptic cycle. The data assimilation cycle 

consists of an optimum interpolation analysis and a global spectral 

model which are used to produce two six hour analysis/forecast cycles. 

In addition to these four major components, a Moveable Fine Mesh model 

is available when needed to produce forecasts of hurricane movement. 

The hurricane model has the capability to move with the hurricane as it 

forecasts the storm track for periods of 48 hours. 
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The operational implementation of these analysis/forecast systems on 

the Cyber 205 will have to proceed in a careful controlled manner so that 

daily production schedules are maintained. ,For this reason, each comoonent 

of the operational suite must be carefully evaluated and tested after 

conversion to the Cyber 205. All components of the present system scheduled 

for implementation on the Cyber 205 will be converted in their present 

form with the current resolution and numerics in order to evaluate their 

performance in a parallel fashion. After about a month of successful 

parallel tests the component will become operational on the Cyber 205. 

The National Weather Service received their Cyber 205 in May of 1983 

and the first operational product appeared on August 30, 1983. The LFM 

was successfully implemented on the Cyber 205 and has been producing 

numerical guidance twice a day since that time. The final version of 

the LFM computer program that was implemented takes about 75 seconds of 

CPU time to produce a 48 hour forecast. This is about 15 times faster 

than the IBM/195 version of the same model. The LFM is a grid-point 

model containing 7 layers with 53 x 45 grid points in each layer. Five 

prognostic variables (pressure, temperature, moisture, and two components 

of wind speed) are specified at each of the 16,695 grid points. The 

primitive equations are solved in finite difference form for each of the 

prognostic variables and then advanced forward in time with an explicit 
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time step. Nine 400 second time steps are required for each hour of model 

integration which yields a total of 432 explicit time steps to produce 

a 48 hour prediction. 

The conversion of the LFM computer code to the Cyber 205 was accomplished 

in about 1.5 months by a skilled meteorologist/programmer. The 2.0 FORTRAN 

compiler was used to produce a half precision version without resorting 

to Q8 special calls. The data structure of the original version of the 

model was changed extensively to take advantage of long vector lengths. 

Minimal vectorization of the radiation and moist physics was achieved 

with use of the vector WHERE statement. 

Operational use of the Cyher 205 has shown that the system is certainly 

reliable and capable of achieving vendor advertised CPU speeds. With 

this new resource the National Weather Service should be able to improve 

most aspects of numerical weather prediction systems including the 

prediction of major precipitation events. With the increase in computing 

power, the National Weather Service will be able to run operational 

numerical guidance systems with improved analysis methods, improved 

model physics and increased mathematical accuracy. 
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Ocean nodelling on the CYBER 205 at GFDL 
Michael D. Cox 

1. Introduction 

At the Geophysical Fluid Dynamics Laboratory, research is carried out for 

the purpose of understanding various aspects of climate, such as its 

variability, predictability, stability and sensitivity. The atmosphere and 

oceans are aodelled mathematically and their phenomenology studied by computer 

simulation methods. The present paper will discuss the present state-of-the- 

art in the computer simulation of large scale oceans on the CYBER 205. While 

atmospheric modelling differs in some aspects, the basic approach used is 

similar. 

The equations of the ocean model will be presented in the following 

section along with a short description of the numerical techniques used to find 

their solution. Section 3 will deal with conputational.considerations and a 

typical solution will be presented in section 4. 

2. Equations of the model 

The model presented here is the multilevel numerical model described in 

Bryan (1969). The continuous equations will be given. A detailed description 

of the finite difference formulation may be found in the above work. The 

equations of motion are the Navier-Stokes equations written in spherical 

coordinates and modified by the Boussinesq approximation. Let m=sec4, 
. 

n=sin$, u=aXm-1 and v=as, where a is the radius of the earth, 

# the latitude and X the longitude. It is convenient to define the 

advection operator 

P(X) =ma-l t (uX)x+ (vX.%gl +(wx)r. (1) 

The equations of motion on a sphere are 

x ut+r(u)-2Rnv=-.a-1(P/PoQ,+F , (2) 
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0 vt+r(v)+2nnu= -a-l(P/po)#+F , 

rVl)=O, 

gP=-P,, 

(3) 

(4) 

(5) 

where Po is unity in cgs units. The conservation equations for the 

temperature and salinity are 

Tt+l-YT)=FT (6) 

St+IYS)=FS (7) 

The terms in F contain effects of mixing as well as external driving forces. 

The equation of state 

P=P(T,S,z) (8) 

is an t:npirically derived formula relating the local density of seawater to 

temperature, salinity and depth. 

The set of equations (l-8) are cast into finite difference for-n. The 

prognostic equations (2,3,6,7) are solved as an initial value problem, placing 

all terns except the local time derivative on the right hand side and carrying 

out timesteps to predict new values of velocity, temperature and salinity on a 

prescribed mesh covering the node1 ocean domain. Given a certain configuration 

of steady wind driving and differential surface heating (both entering through 

the F terms), a statistical steady state is approached asymptotically in time. 

Time scale analysis of Eqs.(6,7) reveals that O(1000) years of integration is 

needed to bring the sluggish abyssal layers of the ocean node1 into a steady 

state. 
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3. Computational considerations 

Let us consider a rectangular ocean basin node1 comparable in size to the 

N. Atlantic Ocean. It extends 600 in longitude, 650 in latitude and 

4000 meters in depth. It is desirable to cover this domain with a mesh fine 

enough to resolve mesoscale (O(100 km)) eddies which play an important role in 

transporting various properties through the ocean. The minimum resolution 

needed for this purpose is roughly 1/3rd degree in latitude and somewhat 

larger, say .4 degree in longitude due to the convergence of meridians on the 

globe. This results in a horizontal grid space of 150x195 points. Vertically, 

18 levels are needed to resolve the scales of interest. This brings the total 

to lust over l/2 million grid points for bhich Eqs.(l-8) must be evaluated each 

timestep. 

The longest timestep which can be used without incurring numerical 

instability is given by the Courant-Friedrichs-Levy condition 

cAt/Ax<l (9) 

where c is the phase velocity of the fastest moving wave in the ocean. Since 

high speed external gravity waves have been filtered from this model by the 

condition we0 at the surface, the fastest wave is that associated with the 

internal density gradients (internal gravity wave) which has a speed of roughly 

3m/sec. The srcallest Ax occurs at the northern wall of the model due to 

convergence of meridians, and is about 20 km. The resultant At is such 

that roughly 5000 timesteps are necessary to integrate one year. Therefore, 5 

million timesteps, or 2.5~1012 grid point evaluations of Eqs.(l-81, are 

required to integrate this model to a steady state. Even the fastest modern 

day computers cannot accomplish this task in a reasonable time, although steady 

progress is being made. The former conputer at GFDL, the Texas Instruments 

ASC, took 15 seconds to compute one time step on the above model. At this 

speed, 2.4 years of computing would be needed to reach a steady state solution. 

Clearly, compromises must be made in designing experiments which are achievable 

in a reasonable amount of computer time. This may involve reducing the domain 

site. or integrating for a shorter period, or both. (Interesting results nay be 

obtained from an integration of O(10) years, particularly for the upper ocean 
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where time scales of adjustment are relatively short.) The greater the 

computational speed which can be attained, the less severe the compromises must 
be. 

In converting the ASC ocean model to the CYBER 205, the most fundamental 

alteration of the code had to do with the treatment of land masses. 

Previously, the computation was carried out only over ocean points by making 

the DO loop limits functions of the placement of land. The contiguity 

requirenent of the 205 for vectorization allows only the innermost of the three 

dimensional loops to vectorize in this case. An alternative method of handling 

land is to compute aA points as if they were ocean and, at the end of the 

timestep, restore the land to its specified value using a masking array. 

Contiguity is then satisfied and vectorization is enabled through two 

dimensions. (The third dimension cannot be vectorized because it is cycled 

through memory from disc.) By using the latter technique, the typical vector 

length in the computation is.increased iron 150 in the example above (east-west 

dimension) to 2700 (east-west times depth dineneion) resulting in a 

considerable decrease in the relative time spent in vector startup. 

An additional time saving has been accomplished in an area of the code 

which is used heavily, but is inherently unvectorizable due to a recursive 

property. Using 08 calls to insert machine language directly into the FORTRAN, 

CDC personnel have "unrolled" this loop, greatly improving on the code 

generated by the compiler for the equivalent FORTRAN loop. 

The use of half-precision on all floating point variables has resulted in 

a gain of only about 15% in overall running speed, although sections of the 

code which are 100% vectorized increase in speed by roughly 40X. Additional 

work is needed to determine why the overall gain is so small considering the 

high degree of vectorization of the code. 

Since the model above is too large to fit into core memory entirely, data 

is cycled through memory from disc as it is needed each timestep. If this disc 

transfer cannot be buffered sufficiently well, computation ceases while waiting 

for the I/O to finish. The result is that the computer may not be used 

efficiently, particularly if the other Jobs running concurrently have the same 

difficulty. Until recently, this was a severe problem on the 205. The above 

model, when in the 205 alone, ran only about 15X of the wall clock time. 

Improved I/O schemes have been developed by CDC personnel at GFDL and currently 

the same model runs about 80% of the wall clock time when alone. This compares 
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favorably with I/O efficiencies on the ASC. 

The CYBER 205 version of the model described above currently takes 4 

seconds to compute one timestep, almost a factor of 4 faster than the ASC. 

While this speed still does not make the experiment proposed at the beginning 

of this section feasible, the compromises which are necessary to produce an 

attainable solution are much less severe than before. One such experiment will 

be described in the following section. 

4. An ocean simulation experiment 

If one wishes to study the effects of topography on the dynamics of the 

Gulf Stream, an argument can be made,that it is not necessary to consider a 

domain as large as the one proposed earlier, and that several decades of 

integration is sufficient. Therefore, let us reduce the domain from 65 to 27 

degrees in latitude and from 60 to 32 degrees in longitude. Also, for this 

purpose, the vertical resolution may be decreased from 18 layers to 5 layers. 

This produces a model which takes approximately one hour of 205 time to inte- 

grate one year of ocean time. Applying surface wind stress and differential 

heating similar to that of the N. Atlantic, this model has been integrated from 

rest a total of 20 years. The resulting temperature pattern at the second 

layer, centered at 212 meters depth, is shown in Fig. 1. The land mass in the 

northwest corner simulates the gross features of the U.S. east coast. A conti- 

nental shelf and slope is also included in this solution. The simulated Gulf 

Stream is revealed by the tightly packed isotherms along the coast and bending 

out to sea at the point representing Cape Hatteras. In agreement with 

observations, there exist both cold and warm core "rings" which have broken 

from the Stream and are drifting westward. An example of the forner is 

centered at about 7OOW, 300N and of the latter at 68OW, 370N. 

Three other experiments have been carried out in this series, altering the 

topography along the western boundary to study its effect on the path and 

behavior of the Gulf Stream. 

References 

Bryan, K., 1969 A numerical method for the study of the circulation of the 

World Ocean. J. Comput. Phys., 4_, 347-376. 
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1. INTRODUCTION 

Numerical Weather Prediction (NWP), for both operational and research purposes, 

requires not only fast computational speed but also large memory. In this paper I will 

discuss a technique for solving the Primitive Equations for atmospheric motion on the 

CYBER 205, as implemented in the Mesoscale Atmopsheric Simulation System (MASS) 

(Kaplan et. al., 19821, which is fully vectorized and requires substsntially less memory 

than other techniques such as the Leapfrog or Adams-Bashforth Schemes. The technique 

to be presented uses the Euler-Backard time marching scheme. 

Also to be discussed will be several techniques for reducing the CPU time of the 

model by replacing %lowt’ intrinsic routines by faster algorithms which use only hardware 

vector instructions. 
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2. MODEL BACKGROUND 

2.1 Description 

MASS is a hydrostatic primative equation model which is run over a limited 

area. The model forecast the 3-dimentional structure of wind, pressure, 

temperature and moisture. The actual domain of coverage, along with the 

horizontal distribution of grid points, is depicted in Fig. 1. The characteristics of 

the model are listed in Table 1. 

2.2 Uses and Support 

The model has been applied primarily to the problem of forecasting the 

atmospheric environment within which severe local storms (severe thunderstorms 

and tornadoes) are likely to develop. It has also been applied to the problems of 

forecasting and investigating east coast cyclogenesis, upper level turbulence and 

shear, and boundary layer transport. Support for the model development has been 

provided by NASA/Goddard using the computational facilities of NASA/Langley 

(CYBER 203) and NASA/Goddard (CYBER 205) 

2.3 History 

The original version was implemented on a 500K word CDC STAR 100 Vector 

Processor at NASA/Langley in the late 70’s using 64-bit FORTRAN. The 

availability of the SL/l programming language at Langley, which permitted easy 

access to the 32-bit instruction set on the STAR 100, resulted in an effective 

doubling of the memory and the model was recoded with larger vectors. This 

allowed for an increase in the area over which the model was run while maintaining 

the same horizontal and vertical resolution. 
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FIG, 1 DOMAIN OF COVERAGE BY MASS MODEL AND THE HORIZONTAL 
OF GRID POINTS DISTRIBUTION 



TABLE 1 CHARACTERISTICS OF MASS MODEL 

0 

0 

0 

0 

0 

0- 

0 

0 

0 

0 

m(DEsCF?lPTIoN) 

Hvmmnc fhHITM hMNI& 

TERAIN FQLOWINGSIGHA-P Ctmrmm 
LIMITED Am DOHAIN 
CM~IMGRIDU~A P~SE~~PHIC~~AP(ARAKAYA"A" Grub> 
~TH OFWR Accmm Hmzmm PACE DFFE~NCING 
&OmmAccumVm~~ SPACE DFFGNING 
~NDOIW Accum TIHE DIF~~~NG 
MIADATAI~DERIVED~~H THE LFtl Arwx ~RAWINSO~~DES 
INmnrZA~acsBAsEDOIJMECACULGaCV~ATI~ 
PHvsrcS 

-LMGESCMf%fCIPIlATION 
-~ETMYB'QWJD~YLAY~ 
- DRY CoNwpIbN 

* - Mosr C~NVECTI~~J(UPIDERDEV~OPMENT) 

50 Kn GRIDSPACINGAT 45O11 
19Ewuv SPACEDLAY= 
128 X 96 COHPUTATIONL DOWN 
TI HE DEPENDENT MUNDARY Co~~rnws 
COMFWEHEHSIVE~NTEMCTIVE DIAGWJIC PACKA~CE ON THE FRONT END 

-vEKTIc#PRoms 
- vEmc# CRassEcTIoNs 
-Cmsrr\m P~ssla SWACES 
- TIHE Hmm~ 
- TFWXXIES 
- VFWKATIONSTAIKTICS 

38 



In the spring of 1980, the STAR 100 was upgraded to a lm word CDC CYBER 

203. The new machine effectively had twice the memory of the STAR 100. The 

area over which the model is run was again expanded and the vertical resolution 

was increased from 12 to 14 vertical layers. 

In the spring of 1983, the model was transferred to the NASA/Goddard 

CYBER 205. The model was recoded in CDC FORTRAN 2.0 using 32-bit 

arithmetic. After being successfully benchmarked against the Langley version, the 

vertical resolution was again increased from 14 to 19 layers. The Goddard version 

of MASS on the CYBER 205 executes approximately 3 times faster than the 

Langley version on the CYBER 203. This can be explained by 

1)Reduction in cycle time from 40 to 20 NS. 

2)Linked triad instruction on the CYBER 205. 

3)Faster gather/scatter instruction. 

4)Coding differences. 

3. EQUATION SET 

The model utilizes a standard primitive equation set cast in a terrain followingrp 

coordinate system. As indicated earlier, the forecasted variables are the 3-D 

distribution of wind, pressure, temperature and moisture. The basic prognostic equations 

are given below where u and v are x and y coordinate momentum, T is temperature, q is 

the moisture mixing ratio andnis the pressure at the terrain minus the pressure at the 

top of the model. 
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Three diagnostic equations close the system and are given below where & is the 

vertical velocity, 4 is the geopotential energy andCc)is the vertical velocity in pressure 

coordinates. 

The boundary conditions are 

and the definitions for and Vare 

o-= P-Ptop 7-l-= P SJR - P t OP 

the remaining variables are 
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m= mapscale grid transformation factor 

c= P specific heat at constant pressure 

R= gas constant for dry air 

P sup= pressure at the terrain 

Ptop= pressure at the top of the model 

X = horizontal eddy diffusivity 

4. GRID SYSTEM 

The technique for solving the differential equations is to discretize the equations 

into finite difference form and solve them on a 3-D grid. The horizontal grid employed is 

the Arakawa “A” grid where all dependent variables are defined at all grid points. The 

vertical grid is staggered so that u, v, T and q represent layer averages defined at the 

midpoint of each layer and and are held at the layer interfaces. The third diagnostic 

variable, w, is held with u, v, T and q. This structure is represented in Fig. 2. 

5. NUMERICAL TECHNIQUE 

5.1 Horizontal Space Derivatives 

The fourth order accurate finite difference approximation to an x-direction 

space derivative for an arbitrary variable y/ is given below 

where i is a horizontal index; An analogous formula is used for y - direction 

derivatives. 
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FIG, 2 VERTICAL GRID SYSTEM OF MASS 

42 



- 

5.2. Vertical Space Derivatives 

A second order accurate finite difference formula is used to approximate the 

vertical advection terms of the u,v, T and q prognostic equations. The 

representation, for an arbitrary variable p, is given below 

where k is a vertical index. 

5.3 Time Derivatives 

A second order accurate approximation to the time derivatives is used. The 

Euler-Backward Technique has the properties of frequency dependent damping and 

no computational mode. For an arbitrary variable the finite difference 

representation is given as 

Prediction 

Correction 

where n is a time level index and * refers to a intermediate time level. 
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This scheme requires the storage of only one time level of information (time 

level n) whereas other explicit schemes such as the Leapfrog Scheme requires the 

storage of at least two time levels (n and n-l). The penalty is that twice the 

computational work is required as compared with the Leapfrog scheme. 

6. BASIC MEMORY REQUIREMENTS 

As mentioned earlier, the Euler-Backward scheme for time marching the 

prognostic equations for the 3-D structure of wind, pressure, temperature and moisture 

requires the storage of only one time level of information. The * ‘ed time level is an 

intermediate time level and only needs to be as deep (with respect to the vertical) as is 

required to solve the equations at a layer. It should be noted that only the vertical 

advection terms couple the model layers together and that to solve the equations at leyer 

k requires the dependent variables at layers k+l, k and k-I. Therefore, the * ‘ed time 

level only needs to be 3 deep (it holds the prediction values to be used during the 

correction step) and can be reused for the solution of each layer. 

Given that the 19 model layers contain 128 x 96 grid points each, the basic 

memory required is 

u (128, 96, 19) 

v (128, 96, 19) 

T (128, 96, 19) 

q (128, 96, 19) 

pi (128, 96) 

ustar (128, 96, 3) 

vstar (128, 96, 3) 
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tstar (128, 96, 3) 

qstar (128, 96, 3) 

pistar (128, 96) 

If an additional layer were to be added only the u, v, T and q arrays would be 

increased. The ustar, vstar, tstar and qstar arrays are always dimensioned 3 deep and 

this is a function of the vertical advection terms which require 3 layers of storage to 

solve the equations. 

In contrast, the Leapfrog scheme would require 2 sets of arrays dimensioned 128 x 

96 x 19, therefore, there is a considerable memory savings with the Euler-Backward 

Scheme. A technique developed by Tuccillo (1983) shows some promise in reducing the 

computational work by increasing the premissable timestep. 

7. METHOD OF SOLUTION 

The method of solution is depicted in Fig. 3 and shows the sequence of steps 

required to solve the equations at all layers. Prediction is the step that advances the 

solution from the n to the * time level and correction is the step that advances the 

solution from the * to the n+l time level. It there are NZ layers then there are 2*NZ 

number of steps required to advance the solution one time step. The number above each 

line represents the order of solution where the first step is to perform prediction for 

layer 1, the second step is prediction at layer 2, the third step is correction at layer 1 

and so on. After correction (the 2*NZ step) at layer NZ is finished the solution has been 

advanced one time step. 
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The *Ied arrays are reused for each layer and the calculations for each layer are 

fully vectorized where the vector lengths are NX*NY or 12288. For this vector length 

the machine is computing at about 98% of its maximum rate. 

8. BOUNDARY CONDITIONS 

Since MASS is a limited area model, as opposed to a global model, the solution at 

the horizontal boundaries needs to be specified. The technique for specifying the 

boundary conditions consist of blending externally calculated values using a weighted 

average formula which is represented by 

where W = 0 on outer column and row 

w= 0.333 on first column and row in 

W = 0.666 on second column and row in 

w= 1.0 on third column and row in 

It should be pointed out that this technique produces an overspecification at the 

boundary and higher horizontal diffusion is required near the boundaries to control noise 

generation. 

This technique is vectorized by holding the externally specified boundary 

tendencies in a vector and using the scatter instruction to expand them into the correct 

positions prior to computing the weighted average. This technique minimizes to amount 

of storage required. 
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9. PROGRAMMING TECHNIQUES 

The code Is completely vectorized in the horizontal. The average vector length 

is about 12000 which represents the number of horizontal grid points. There is a loop 

over the vertical layers. 

Some specific techniques used during the coding are 

0 32-bit arithmetic 

Sensitivity tests have indicated that 32-bits provides enough precision. 

Using 32-bits effectively doubles the real memory and halves the execution 

time. 

0 Explicitly Vectorized 

The code does not depend on automatic vectorization by the compiler. 

All descriptors are set up with DATA and ASSIGN statements. Special Q8 

calls are used where required. 

.o Diadic and Triatic Structure 

All vector statements are written in a diadic structure (triadic when 

linked triads are created) to minimize compiler generated dynamic space 

which may cause paging. 

0 Subroutines are kept small enough so that the Register File is not 

overflowed. 

Subroutines which have more local variables then the size of the 

register file (approximately 200) can be inefficient since loads from 

memory must be executed. AR subroutines are kept small enough so that 

the swap instruction can load all necessary local variables at entry. 
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0 Parameter Statement Used for V.ector Dimensions 

Vector dimensions are easily changed by changing parameter values.. 

0 Factoring of Equations to yield Linked Triads 

The sequence of instructions have been arranged to yield the maximum 

number of linked triads. 

0 Run Only in Real Memory 

No page faults are generated during the interatlve time marching. 

0 Vectors are Grouped on Large Pages 

All large vectors are placed in common and grouped on large pages 

using loader options. 

0 Bit Vectors vs. Gather/Scatter 

For those situations where control store or gather/scatter can be 

applied, an analysis using the nominal performance figures for each 

instruction was performed and the most CPU or memory efficient 

techniques was applied. 

10. TECHNIQUES FOR REDUCING CPU TIME 

A 24-hour simulation with the model requires 1312 timesteps. Each timestep 

requires the evaluation of 2*NZ natural logs (for 12288 grid points). This required 

approximately 22 mins of CPU time using the 32-bit FORTRAN VHALOG function. 

Since the range of arguments for the natural log function was known, a more efficient 
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technique was incorporated where the natural log was approximated with a series 

factored using Homer’s Rule. The evaluation requires 11 vector instructions, nine of 

which are linked triads, and runs approximately 40 times faster than the FORTRAN 

intrinsic function. This technique reduced the CPU time spent evaluating natural logs to 

30 sets. 

Other techniques for reducing CPU time consist of approximating the ** 

FORTRAN function with series of square roots (square root in a hardware instruction) 

and inverting scalars to generate vector multiplies instead of vector divides. 

The version of MASS implemented on the CYBER 205 at NASA/Goddard requires 

13 large pages of memory and 15 minutes of CPU time (same as wall time) for a 24 hour 

simulation over the area depicted in Fig. 1. 

il. EXAMPLE OF OUTPUT 

MASS at Goddard features a comprehensive postprocessing system to produce 

output from the model for interpretation. The post processing system runs interactively 

and produces hard copies on a GOULD electrostatic plotter. Future versions of 

the postprocessing system will likely feature interactive color graphics which should 

greatly improve the usability of the modeling system as a research tool for studying 

atmospheric processes. Figs. 4-12 are examples of the output from three of the six 

postprocessing programs currently available. 
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Inrroducrion. Significant advances are being made in the theoretical treatment of the conformation 
and dynamics of biological molecules. Several recent convergent developments are responsible for 
opening up new fields of investigation. They include: 
1. The development and application of powerful theoretical techniques taken from statistical physics 

such as Monte Carlo and molecular dynamics simulations to biological systems. 
2. The development of powerful computational hardware such as the Cyber 205. 
3. The development of interactive graphics systems. 
4. The increasing availability of experimental structural and dynamic data such as the ever-growing 

data base of protein crystal structures, small peptide crystal structures and the structural and 
dynamic properties of these same molecules in solution. 
These developments enabled us to undertake the project of studying ligand binding to dihydro- 

folate reductase (DHFR). This is an extremely important enzyme. as it is the target of several drugs 
(inhibitors) which are used clinically as antibacterials. antiprotozoals and in cancer chemotherapy. I. z 
DHFR catalyzes the NADPH (reduced nicotinamide adenine dinucleotide phosphate) dependent reduc- 
tion of dihydrofolate to tetrahydrofolate, which is used in several pathways of purine and pyrimidine 
biosynthesis. including that of thymidylate. 3 Since DNA synthesis is dependent on a continuing supply 
of thymidylate. a blockade of DHFR resulting in a depletion of thymidylate can lead to the cessation of 
growth of a rapidly proliferating cell line. 

DHFR exhibits a significant species to species variability in its sensitivity to various inhibitors. 
For example, trimethoprim. an inhibitor of DHFR. binds to bacterial DHFR’s 5 orders of magnitude 
greater than to vertebrate DHFR’s. 4.3 We were interested in studying the structural mechanics. dynam- 
ics and energetics of a family of dihydrofolate reductases to rationalise the basis for the inhibition of 
these enzymes and to understand the molecular basis of the difference in the binding constants between 
the species. This involves investigating the conformational changes induced in the protein on binding 
the ligand. the internal strain imposed by the enzyme on the ligand. the restriction of fluctuations in 
atom positions due to binding and the consequent change in entropy. X-ray crystallographic structures 
of DHFR from a few species, in complex with various Iigands, are known.6-8 as well as partial data 
about the structures in solution. 9-i1 The availability of the structure. in the form of atomic coordinates 
for the enzyme system. is a prerequisite for performing’any kind of energy calculations. In addition. 
due to the size of these systems as discussed below, only the availability of supercomputers such as the 
Cyber 205 make this project feasible. 

Computational Techniques.. The techniques we use to investigate the DHFR system all require the 
calculation of the potential energy of the molecular system. This potential energy is expressed in terms 
of an analytical representation of all internal degrees of freedom and interatomic distances. as in eqn. 
(1). 

v= x:(Db[l - e-a(bbo’12 - Db) + 1/2 C&(e - Q,-J~ (1) 

+ I/2 X.(1 + s cos ti) + l/2 Z%,x’ 

+ xzFFbb’(b - i$ (b’ - b’) 

+ ~~F,,w(e - e,) (8’ - e,‘) + xzFbe (b - b4)) (8 - eo) 

+ xFF,,,, cos 6 (e - e,) (8’ - e,‘) + C&;YX’ 

+ 1,~ [2(r*/r19 - 3(r’/rJ61 + &qi/r 

This type of representation of the potential energy in terms of the internal (valence) degrees of 
freedom is called a Valence Force Field. Such valence force fields have long been used in vibrational 
spectroscopy in order to carry out normal mode analysis. t2 Basically the terms in equation (1) express 
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the energies required to deform each internal coordinate from some unperturbed “standard’ value 
denoted by the subscript “0’. The lirst term is a Morse potential which describes the energy required to 
stretch each bond from its relaxed value, bo. The second term represents the energy stored in each 
valence angle when it is bent from its “standard’ value, 00. The third term represents the intrinsic 
energy required to twist the molecule about a bond by a torsion angle, do. The fourth term represents 
the energy required to distort intrinsically planar systems by x from their planar conformation, i.e. the 
out of plane term. The next terms represent various couplings between internal coordinates, which are 
known to be necessary from studies of vibrational spectra. l3 They are the bond-bond, angle-angle. 
bond-angle, angle-angle-torsion and out of plane cross-term respectively. The last 3 terms describe the 
exchange repulsion, dispersion and coulombic interactions that occur between non-bonded atoms. 

The parameters Db , b , & , 4 , and Fij are the force constants for the corresponding 
intramolecular deformation, r’ and E characterize the size of the atoms and the strength of the van der 
Waals interaction between them, while the qi are the partial charges carried by each atom. The parame- 
ters for the functions were derived from fitting a wide range of experimental data including crystal 
structure, unit cell vectors and the orientation of the asymmetric unit, sublimation energies, molecular 
dipole moments, molecular structure, vibrational spectra and strain energies of small organic 
compounds.14-19 Ab-initio molecular orbital calculations have also been used in conjunction with the 
experimental data to give information on charge distributions, energy barriers and coupling terms, both 
to supplement and confirm the results obtained from the experimental data.20-21 

Mnimisation. Given the analytical representation of the potential energy in eqn. cl), we can 
minimize this energy with respect to all internal degrees of freedom, i.e. solve the equation 

t34axi = 0 i- 1, 3n (2) 

where the Xi are the Cartesian coordinates of the molecule. 
The minimisation results in the “minimum energy structure” of the system. Analysis of the minimum 
energy structure reveals the basic structural features of the system along with the interatomic forces 
underlying this minimum energy conformation. At the minimum, we can take second derivatives of 
the energy and construct the mass weighted second derivative matrix. From the eigenvalues of this 
matrix the vibrational frequencies may be obtained and the normal modes from the eigenvectors.22 The 
conformational entropy of the system can now be calculated from the vibrational frequencies using the 
Einstein relations.23 The conformational entropy of a system plays an important role in both conforma- 
tional equilibria and binding.24 

Molecular dynamics. Molecular dynamics is the numerical integration of Newtons classical equa- 
tions of motion. Having specified the potential, we define the initial conditions of the system, the coor- 
dinates of the protein, inhibitor. solvent and a set of initial velocities. Once the initial conditions are 
given, Newtons equations of motion 

- SVni ’ ’ ‘7”)/87i = F@i * ’ .7”) = mdt7Jdt2 (3) 

are integrated forward in time, in order to compute the atomic trajectoriesii (t)..7” (t) as functions of 
time. The forces are calculated from the energy expression in eqn. (1) by taking analytical derivatives. 
We then take a small time step, At, of = l(r15 sec. and applying the acceleration as calculated from 
Newtons law (eqn. 3), we update the velocity and position of each atom, to a new velocity and position 
using a Gear25 predictor-corrector algorithm or a Verlet algorithm. 26 The forces and acceleration at the 
new positions are then calculated and we repeat the procedure, thus tracing the trajectories of the 
atoms. 

Calculations on the Cyber. One of the systems we are studying, the E. cob DHFR-Trimethoprim 
complex, is the system we have been using to develop the programs on the Cyber 205. Table I lists the 
no. of atoms, internal coordinates and non-bond interactions for this system, to demonstrate the 
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magnitude of the calculation involved. 

Table I 

E. coli Dihydrofolate Reductase System 

atoms 

E. coli Dihydrofolate Reductase 2490 
Trimethoprim 40 
155 Waters 465 

2995 

Internal Coordinates 

Bonds 2875 
Valence Angles 4785 
Torsion Angles 6784 

Bond-Bond cross-terms 4785 
Bond-Angle cross-terms 9570 
Angle-Angle cross-terms 7584 
Angle-Angle-Torsion cross-terms 6784 

Non- bond pairs = 1.600,OOO 

Minimisation and molecular dynamics both require computing the energy using eqn. cl), changing 
the coordinates and repeating this process many times. Note that each energy calculation involves 
evaluating the appropriate terms in eqn. (1) for each of the internals listed in table I. Thus the last 
three terms in eqn. (1) need to be evaluated for each of the 1.600,OOO non-bonded pairs. As the time 
required to compute the change in the coordinates once the energy has been calculated is small. the 
time required to calculate the energy determines the time to perform the minimisation, or how many 
steps of dynamics can be done. For a minimisation the number of iterations depends on how close to 
zero we require the derivatives, for a conjugate gradient minimiser previous experience indicates that 
about 3 times the number of atoms iterations are required to get derivatives to less than 0.05 
kcal/moi& which is about 10,000 iterations for the protein. In molecular dynamics we would like to 
simulate at least 100 picoseconds. preferably a nanosecond, as this is still a very short time compared to 
molecular events such as binding. This requires 100,000 i:erations at a 1 femtosecond timestep. Thus 
the speed with which the energy calculation is carried out is crucial. 

Non-bond interaction calculation. Table II shows the timings of the energy routines used to com- 
pute eqn. (1) on the VAX 11/780 and the Cyber 205 for the Dihydrofolate Reductase system. The 
non-bond part of the calculation takes by far the major portion of the CPU time, 78% of the iteration 
time on the VAX, so this was vectorised first. The routine computes the non-bond energy, see eqn. 
(l), by calculating the interaction between all pairs of atoms, except for bonded atoms and l-3 interac- 
tions. For a 1OA cutoff this is = 1.6x 106 pairs, which is the reason this is the major time consuming 
portion of the energy calculation. This was implemented on the VAX by a residue neighbour list in 
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Table II 

Comparison of the Timing of Energy Calculation routines for 1 Iteration 

Routine VAX 111780 

Bonds 2.42 
Valence Angles 9.06 
Torsion Angles’ 30.69 

CYBER 
Vectorised 

Large Pages 
0.055 
0.13 
0.55 

Bond- bond 
Bond-Angle 
Angle-Angle 
Out of Plane 

5.25 0.14 
11.9 0.25 
16.55 0.!7 
2.35 0.10’ 

Non-Bond 448.98 1.23 

Iteration Timing2 573.58 2.7 

1. The out of plane routine is not vectorised. 
2. The iteration timing is slightly larger than the sum of all the individual routine timings as it in- 

cludes the time for the minimisation routine itself. 

which for each residue a list of all the residues it interacts with is stored. This neighbour list is set up 
prior to the non-bond calculation and has to be recalculated every so often if a cutoff is used. In the 
non-bond calculation a loop is performed over all the residues and for each residue the interactions of 
all atoms in it with all atoms of the residues in the neighbour list of this residue are computed. This 
routine was vectorised by calculating the interaction of 1 atom0 with all its neighbouring atoms as vector 
operations. This gives vector lengths of up to 1000 for a 10A cutoff. A bit vector with the length of 
the number of atoms in the molecule is set up for each atom which indicates whether an atom interacts 
with this atom or not. This is a large array, Nz/2. where N is the number of atoms, but because of the 
bit addressing capability of the Cyber 205 this only takes up 70,000 words in memory. The perfor- 
mance improvement of this routine after vectorisation is 365 over the VAX, which includes the intrin- 
sic scalar speed of the Cyber 205, some 14 times faster than the VAX. The vectorisation of the non- 
bond routine took approximately 1 month. 

Valence energy calculation. The valence energy and cross-term routines take =20% of the iteration 
time on the VAX. These routines were vectorised next, starting with the torsion angle routine which is 
the next major time consuming routine, 6% of the iteration time on the VAX. The bond, valence 
angle and torsion angle routines already used a list of the internals in the VAX version. These were all 
vectorised by creating vectors for the bonds, valence angles and torsion angles, which gives vector 
lengths from 3000 to 9000 for the dihydrofolate reductase system. see table I. These vectorisations 
resulted in performance improvements of 37 to 90 over the VAX in these routines. 
To date we have achieved a net gain in speed over the VAX 1 l/780 of 212 for the enzyme simulation 
study described above. 
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Simulation of circuits having more than 2000 active devices requires the 
largest, fastest computers available. A vector computer, such as the CYBER 205, 
can yield great speed and cost advantages if efforts are made to adapt the simu- 
lation program to the strengths of the computer. 

ASPEC and SPICE (1) are two widely used circuit simulation programs. 
ASPECV and VAMOS (5) are respectively vector adaptations of these two simu- 
lators. They demonstrate the substantial performance enhancements possible for 
this class of algorithm on the CYBER 205. ASPECV is in use at ISD. VAMOS is in 
daily production use at MOSTEK. 

INTRODUCTION 

Over the past decade, the design of integrated circuits has become increas- 
ingly complex. Manufacturers who once had special purpose circuits of only a few 
dozen components now have microprocessors and random access memory chips 
constructed of thousands of devices. While early circuits were readily designed 
and debugged by hand, the more complex circuits have necessitated computer 
assistance. 

During one phase of computer aided design, circuit simulation programs are 
used. These programs are given circuit interconnection information (nodes) and 
device characterizations (models). After establishing initial current and voltage 
conditions at time zero, they simulate circuit operation by evaluating device con- 
ductances and node voltages over small increments of time. Due to the rapid 
response of microcircuitry to voltage changes, circuit simulation must often be 
performed at timesteps of a few hundred picoseconds. This small timestep may 
necessitate thousands of steps to simulate circuit performance for a given set of 
initial inputs. Many such simulations (which may each require hours on an IBM 
3081 or CDC 176) are required to thoroughly explore a circuit’s characteristics 
over a wide range of temperatures and input sets. 
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The speed of a supercomputer is valuable to engineers designing such large 
scale integrated (VLSI) circuits. These engineers are, however, unwilling to com- 
promise simulation accuracy for speed. For this reason, various projects have 
investigated vector computers (2) (3) (4) for use in the transient analysis of VLSI 
circuits. 

Two well-known and widely used circuit simulators are ASPEC, copyrighted 
by Mr. Frank Jenkins, and SPICE, copyrighted by the Regents of the University of 
California. ASPECV is the product of a technical team from the San Francisco 
District of Control Data Corporation Professional Services Division. This team 
spent approximately one man-year analyzing ASPEC in detail. Their effort 
included extensive conversations with the program’s author and the rewriting of 
select areas of code for enhanced performance. 

The program VAMOS was developed by Steven D. Hamm and Steven R. 
Beckerich of MOSTEK Corporation. VAMOS evolved from a simple installation of 
SPICE2 into a program in which 80 percent of the analysis routine code is 
vectorized. Many sections of code were radically changed due to the application 
of algorithmic, rather than simple syntactic, vectorization. 

ARCHITECTURAL CONSIDERATIONS 

ASPEC AND SPICE were initially developed for a type of computer similar 
to the Control Data Corporation 6400. Originally, the programs were designed to 
handle circuits with fewer than 600 devices. Intentional minimization of memory 
requirements increased central processor time. Many users modified ASPEC and 
SPICE for use with large-scale circuits, extending the programs into areas far 
beyond their design. When any design is so overextended, there are often 
undesireable consequences. One obvious consequence was long running time on 
circuits with more than 2,000 devices. 

Optimum performance for both ASPEC and SPICE required retailoring pro- 
gram design to fit the architecture of the CYBER 205. The Cyber 205 used has 
two vector pipes, a 16 megabyte memory, and is capable of 200 million floating 
point operations per second (Megaflops) on 64 bit operands. To maximize perfor- 
mance, the characteristics of this hardware must be considered. Some major con- 
siderations are: 

1. The CYBER 205 defines a vector as contiguous memory locations. While 
ASPEC has a compatible memory organization, SPICE2 linked list storage needs 
re-organization. 

2. The scalar functional units on the CYBER 205 are pipelined. Code that cannot 
be vectorized can be optimized by taking advantage of inherent parallelism. Even 
so, the performance of scalar code will probably be substantially less than the 
theoretical maximum of 50 Magaflops. 
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3. The hardware can generate and use bit vectors, which are useful in vectorizing 
loops containing conditional statements. These bit vectors aid in producing rou- 
tines that have no scalar code and run at full vector speed. 

4. The virtual memory of the CYBER 205 provides over 2 trillion words of user 
memory space. Any program that repetitively uses more than the entire physical 
memory may, however, generate a great amount of paging delay. This fact con- 
strains the choice of algorithms, as a fast algorithm may require additional 
memory. 

PROGRAM DESIGN 

Both ASPEC and SPICE perform their simulations by alternating modeling 
routines with a current matrix solution routine. The modeling routines calculate 
the new device conductances based on device operating points. There is one 
model for each type of device, such as diodes, jfets, mosfets, and bi-polar tran- 
sistors. One model must simulate many different operating modes and 
consequently has many branches and special cases. 

The matrix solution routine calculates branch currents based on the con- 
ductances calculated by the modeling routines. From these currents new node 
voltages are obtained. This routine uses sparse Gaussian Elimination techniques. 
The time required by this routine grows very rapidly and non-linearly with circuit 
complexity. 

In SPICE, to best utilize the long vector capabilities of the CYBER 205, 
an interface routine was written between the vectorized analysis routines and the 
rest of SPICEB. This routine reorganized memory into contiguous vectors and 
established new element pointers. ASPEC was similarly treated. The task was 
less formidable as data was already in homogeneous arrays. 

In both VAMOS and ASPECV, vectorization of device equations is done by 
long vector operations with conditional stores for the results. All devices are 
evaluated in all regions of operation and the results are masked together to form 
composite result vectors. This technique avoids the data motion overhead charac- 
teristic of other methods at a cost of extra operations in each region. For 
VAMOS, the data given in Table 1 shows the tremendous advantage vectorization 
provides. The small amount of scalar store code remaining in MOSFET 
contributes 19.4 of the total 25.5 seconds. 

ROUTINE SCALAR VAMOS RATIO 

LOAD 19.9 1.8 11.1 
DIODE 79.4 3.6 22.1 
MOSFET 325.4 25.5 12.8 

Table 1. VAMOS Routine Comparisons 
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In. VAMOS, the vector startup time required by the CYBER 205 caused the 
rejection of a vectorized matrix solution method for subcircuits as used in the 
program CLASSIE (2). Instead, effort was expended in scalar code optimization to 
achieve maximum instruction overlap. As part of the preprocessing phase of the 
program, the row-column lookup is performed once and the indices are stored in 
an auxiliary array. 

In addition to the VAMOS techniques, ASPECV’s routine EQNSOL detects 
perfect alignment between rows in the matrix. As circuit size increases, the 
number of such rows increases dramatically. Full row-length linked triads are 
executed in this case. 

PROGRAM PERFORMANCE 

Table 2 illustrates a comparison between a scalar version and VAMOS. The 
scalar version was already heavily optimized. The circuit tested contained 2256 
mosfets, 1312 diodes, 1774 resistors and capacitors, and had 1429 equations with 
98.9 percent matrix sparcity. Overall VAMOS performance was 3 times scalar, 
with 4 times in transient analysis. VAMOS performed the analysis over 100 times 
faster than a VAX-11/780. 

ROUTINES SCALAR VAMOS 

READIN 68.4 51.9 
SETUP 34.7 22.7 
DC SOLUTION 47.8 19.0 
TRANSIENT 503.8 126.4 
OUTPUT 5.6 5.6 
TOTAL 660.3 225.9 

Table 2. VAMOS Program Performance Comparison 

Table 3 shows the characteristics of a series of flexible circuits which can 
be made any size by repeating a basic circuit block. Resistors and capacitors are 
also present but are irrelevant to modeling time. Table 4 gives execution time for 
two processors running ASPEC, and the current version of ASPECV on the CYBER 
205. It is projected that, with continued effort, for large circuits the CYBER 205 
mosfet run times could be reduced by another factor of 2 to 3. Table 5 shows that 
the time to model a given device decreases with increasing circuit size, a very 
desireable characteristic for VLSI circuitry. 
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CIRCUIT DIODES MOSFETS 

1 50 50 
2 100 100 
4 200 200 
8 400 400 

16 800 800 
32 1600 1600 

Table 3. Circuit Characteristics 

CIRCUIT TIME UNIVAC 
STEPS 1182 

1 420 30 
2 622 82 
4 869 208 
8 1658 697 

16 1658 1421 
32 1658 TOO BIG 

Table 4; ASPEWASPECV Comparison 

NODES MATRIX 

30 119 
54 220 

102 470 
182 860 
358 1718 
718 3473 

CDC 
176 

CDC 
205 

6 3 
16 6 
42 15 

141 40 
301 76 
TOO BIG 158 

CIRCUIT AVERAGE TIME (micro-sets) 
diode mosf et EFFECIENCY 

1 9.7 2 7.1 E 
4 5.8 28 
8 5.2 26 

E 4.7 4.5 25 24 

Table 5. ASPECV Size/Efficiency 

VECTOR 

El 
80 
89 
94 
97 

Since most circuit simulation runs produce a great deal of printed output, 
current simulations using ASPECV spend the majority of their time in Fortran 
I/O. As an example, one ASPECV circuit containing 1000 devices and 950 nodes 
initially ran in 980 seconds on a UNIVAC 1182 and in 141 seconds on the CYBER 
205. After optimizing everything but the diode and mosfet models, the same 
circuit required 72 seconds on the 205. Of the 72 seconds, 39 were spent in the 
models. ASPECV requires only 44 seconds to simulate the same circuit. Only 6.3 
seconds are required in the models: 1.3 in diodes, 5.0 in mosfets. Although the 
mosfet model is still several times slower than theoretically possible, further 
effort would yield small returns indeed. The simulation mentioned spends over 66 
percent of its time in Fortran I/O routines. 
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Program speedups of 3 to 4 were accomplished through vectorization. 
Future work directed at vectorization of the remaining scalar code may result in a 
similar speed increase. Fortran I/O provides an effective limit to maximum 
attainable speed. 
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This report details some of the new computational methods and equivalent math- 
ematical representations of physics models used in the HCV code, a vectorized 
continuous-energy Monte Carlo code.for use on the CYBER-205 computer. Whi le 
the principal application of MCV is the neutronics analysis of repeating reac- 
tor lattices, the new methods used in MCV should be generally useful for vec- 
torizing Monte Carlo for other applications. For background, a brief overview 
of the vector processing features of the CYBER-205 is included, followed by a 
discussion of the fundamentals of Monte Carlo vectorization. The physics mod- 
els used in the MCV vector ized Monte Car lo code are then summarized. The new 
methods used in scattering analysis are presented along with details of 
several key, highly specialized computational routines. Finally, speedups 
relative to CDC-7600 scalar Monte Carlo are discussed. 

introduction 

Monte Carlo calculations fill a special and important need in reactor physics 
analysis -- they represent “truth” against which approximate calculational 
methods may be calibrated. The Monte Carlo method permits the exact modeling 
of problem geometry, a highly accurate mathematical model for neutron inter- 
actions with matter, and a cross section representation that is as accurate as 
theory and measurement permit. The precision of Monte Carlo results is prima- 
ri ly limited by the computing time required to reduce statistical 
uncertainties. 

Conventional (scalar) Monte Carlo codes simulate the complete history of a 
single neutron by repeated tracking through problem geometry and by random 
sampling from probability distributions that represent the collision physics. 
The accumulation of data for l,OOO,OOO neutron histories will typically 
require three to seven hours of CDC-7600 CPU time. On newer computers such as 
the CYBER-205, scalar Monte Carlo codes may run one and one-half to two times 
faster (with some tailoring of the coding) because of the reduced cycle time 
and improved architecture of the scalar processors. Much larger gains are 
possible when the vector processing hardware of the CYBER-205 is utilized. 

The random nature of the Monte Carlo method seems to be at odds with the 
demands of vector processing, where identical operations must be performed on 
streams of contiguous data (vectors). Early known efforts to vectorite Monte 
Carlo calculations for other vector computers were either unsuccessful or, at 
best, achieved speedups on the order of seven to ten times for highly simpli- 
fied problems. Recent results for honte,Carlo in multigroup shielding 
applications and in continuous-energy reactor lattice analysis have demon- 
strated that Monte Carlo can be successfully vectorized for the CYBER-205 
computer. Speedups of twenty to fifty times faster than CDC-7600 scalar cal- 
culations have been achieved without sacrificing the accuracy of standard 
Monte Carlo methods. Speedups of this magnitude permit the analysis of 
l,OOO,OOO neutron histories in only five to ten minutes of CPU time and thus 
make the Monte Carlo method more accessible to reactor analysts. 
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General Considerations for Vectorized Monte Carlo 

Conventional scalar Monte Carlo codes may be characterized as a collec 
tion of random decision points separated by short and simple arithmetic. 
Individual neutron histories are simulated, one at a time. The basic idea of 
vectorized Honte Carlo is to follow many neutrons simultaneously through their 
random wa 1 ks, using vector instructions to speed up the computation rates. 
The many conditional branches (IF...GOTO), few DO-loops, and largely random 
data retrieval embodied in conventional Honte Carlo codes preclude vectoriza- 
tion through the use of automatic vectoriting software or by a syntactic 
vectorization of coding. Instead, experience has shown that a comprehensive, 
highly integrated approach is required. The major elements of such an 
approach are as follows: 

1. The entire cross section and geometry database must be restructured to 
provide a unified data layout. 

2. The entire Monte Carlo code must be restructured (rewritten). 

3. Deliberate and careful code development is essential. 

Clever programming and machine “tricks” alone will not ensure successful vec- 
torization of a Monte Carlo code. The key to successful vectorization of 
Monte Cario is that a well-defined structure must be imposed on both the data- 
base and Monte Carlo algorithm before coding is attempted. This structure may 
arise simply from the reorganization of existing data/algorithms or may entail 
the development of special mathematics or physics. Careful and systematic 
development helps to preserve the structure as the vectorized code becomes 
more complex. 

VectorFtation Techniques 

The principal obstacle to vectorizing a conventional scalar Monte Carlo code 
is the large number of IF-statements contained in the coding. Examination of 
sections of coding shows that, typically, one-third of al I essential FORTRAN 
statements may be IF-tests. Careful consideration of the Monte Carlo program 
logic and underlying physics permits categorizing these IF-statements and 
associating them with three general algorithmic features of Monte Carlo codes 
-- implicit loops, conditional coding, and optional coding. lmpl ici t loops 
are vectorized using shuffling, and conditional coding is vectorited using 
selective operations. This approach to vectorizing Monte Carlo is effective 
on the CYBER-205 and other vector computers having hardware capabilities for 
vectorized data handi ing. In successful attempts to vectorize Monte Carlo 
methods, 40 to 60% of ail vector instructions used in actual coding were vec- 
tor data hand1 ing instructions (gather, compress, bit-control led operations, 
etc.). 

The data-handling operations associated with shuffling and selective oper- 
ations in the vectorized code constitute extra work that is not necessary in a 
scalar code. This extra work offsets some of the gain in speed achieved from 
vector ization. For vectoritation to be successful, overhead from shuffling 
and selective operations should comprise only a small fraction of total com- 
puting time. It is thus essential that all data hand1 ing operations be 
performed with vector instructions. Vector computers that must rely on scalar 
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data handling operations are severely limited in vectorized Monte Carlo per- 
f ormance. 

Conclusions 

Continuous-energy Monte Carlo methods have been vectorized for the CYBER-205 
and the speedups are large. Due to the drastic restructuring of the honte 
Carlo coding and data base, the HCV code has been limited to the treatment of 
repeating reactor lattice geometry. This restriction has been deliberate, 
however, to permit an orderly and careful program of development. There are 
no a priori limitations on the methods used in vectorization that would pre- 
clude extension to more general applications. Profound changes in the methods 
used for reactor physics analysis are anticipated now that l,OOO,OOO neutron 
histories may be run in only five to ten minutes with the CYBER-205 vectorized 
Monte Carlo vs. the three to seven hours that are typical for COC-7600 scalar 
Monte Carlo. 
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Abstract 

A q iscroscopic dynamical treatment of chemical systems comprising both 
light particles that require a quanta1 description and heavy ones that may be 
described adequately by classical mechanics has recently been presented 
[J. Chem. Phys. 78, 2240 (198311. The application of this “hemiquantal” 
method to the specific problem of the vibrational relaxation of a diatomic 
molecule embedded in a one-dimensional lattice is presented. The vectorization 
of a CYBER 205 algorithm which integrates the 103-104 simultaneous 
“hemiquantal” differential equations is examined with comments on opti- 
mization. Results of the simulations are briefly discussed. 

* 
David Ross Fellow 
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I. Introduction 

A microscopic dynamical description of a chemical system composed of both 

light particles that require a quanta1 description and heavy ones that may be 

described adequately by classical mechanics has been proposed recently [J. 

Chem. Phys. 78, 2240 (198311. The description consists of a self-consistent 

set of ’ ‘hemiqaantal’ ’ equations (HQE) arrived at by taking a partial classical 

limit of Heisenberg’s equations of motion for the system. In form, the EQE 

auuear to consist of Eeisenberg’s equations for the light particles coupled to 

Eamilton’s equations for the heavy particles. The coupling is self-consistent 

in that there is an instantaneous feedback between the light and heavy 

subsystems, with total energy and probability of presence of the quanta1 

subsystem being conserved. 

This paper will focus on the numerical solution of the HQE on the CYBEE 205 

for the special case of a diatomic molecule embedded in a cold, one-dimensional 

lattice. In Section II, we detail the model and specific form of the HQE, 

while the CYBER 205 algorithm and steps taken to optimize performance are 

included in Section III. Results of the simulations and some discussion of 

their physical significance are presented in Section IV. 

II. Model and Equations of Motion 

Figure 1 depicts the physical situation, i.e. a single diatomic molecule BC 

occupying a substitutional site in an otherwise pure one-dimensional lattice of 

atoms A; the end atoms of the lattice are assumed free. So that the normal 

modes of the lattice are known analytically, the mass of BC is taken to be 

equal to that of A. The heavy, classically behaving degrees of freedom are 

considered to be the displacements (ui) of the lattice atoms, including the 
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center of ~SSS of BC, from their oqoilibriam positions. Tho internal vibration 

(q) of BC is treated quantally aad, for eirplicity, as $ harmonic, two-state 

systom. We assumo that only nearost-neighbor atoms intoract with one another: 

A-A interactions aro harmonic; A-B and A-C interactions l ro approximated by 

Morse potentials. 

Under those conditions, the HQE take the form 

. 
cp 

-1 = -ia [eici(t) + 1 Vij(~“kwI)cjwl 

up = PiWrnA (1) 

. 
Pi(t) = - 5, lJ(Iuj(t)l) 

i 
+ 1 cjWckWF.. ((urn(t 

1Jk 
. 

Jk 

Hore ci is the occupation probability amplitodo for quanta1 state ii pi is the 

momentum conjugate to u.; 
1 

U is the harmonic part of tho potential, i.e. 

n-2 *1 

U = i 1) (ui+l - Ui12 + ) (ui+l - Ui121 # 

i=l i=n+l 

where N is the number of lattice atoms. F is the quanta1 force 

(2) 

defined by 

F ijk = a-Vij/hk (3) 

where 

87 



Vij(lukI) = CilV, + VAClj> , 

and the Morse potential VAB is explicitly 

%B = DAB(expI-aAB(ua-un-l + L - y,q)l-11 
2 

(4) 

(5) 

with a similar expression for V 
AC’ 

Since the ci are complex, the HQE consist of 2N+4 coupled first-order 

ordinary differential equations. Given initial conditions appropriate to the 

physical situation, we can integrate these numerically by standard techniques. 

Our principal problem now is to develop and optimize an algorithm appropriate 

to the CYBER 205. 

III. CYBJZR 205 Algorithm 

The HQE [Eqs. (l)] can be cast in terms of the vector differential equation 

i = f(X(t)), defined by 

. 
x1(t) = fl(Xl’ . . . . XnL x1(O) = xy , 

. . . . . . 
. 
x,(t) = fu(xl, . . . . x& x,(O) = x; . 

The vector X can be written as 

(6) 

x= [C,U,Pl where, for example, 

c = [Cl, c2, c3, c41 . (7) 

88 



- 

From experience, we have found the HQE extremely well-behaved. Therefore, they 

can be handled with a relatively simple differential equation solver. We 

employ the familiar fourth-order Rungo-Kutta algorithm (RX41 which, for our 

case, is summarized by the following equations: 

K1 = T f (X1 

K2 = T f(X + K,/2) 

=3 = T f(X + K2/2) (8) 

K4 = T f(X + K3) 

X[(n+l)Tl = X(nT) + (K1+K4)/6 + (K2+K3)/3 

where T is an appropriately chosen time step. Our choice of RK4 is guided by 

several considerations; it is quite stable, self-starting and easily coded for 

the CYBER 205. In addition, we need no direct method of estimating truncation 

error since we can calculate total energy and probability of the system as a 

check. Eventually , the RK4 algorithm will be used to calculate input values 

for a more sophisticated predictor-corrector routine. 

Since our simulations require widely varying amounts of memory, we would 

like to assign storage at execution time. Clearly, the vector pipelines are 

used more efficiently if the entire derivative vector is manipulated at once. 

If we are to deal almost exclusively on the dynamic stack, we need a method of 

parsing the vector X into subvectors C,U,P which can then be handled 

independently. This “breaking up’ ’ is accomplished by building descriptors 

using SHIFT and OR operations on an integer equivalenced to a descriptor which 

points to an area in dynamic space. The subroutine BREAKLIP is presented in the 

Appendix. This routine allows the RK4 mainline to allocate storage dynamically 

while permitting the derivative routine to access each subvector individually. 
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We now concentrate on the vector fun&ion subprogram that calculates the 

derivative f (X1. In our model, the four probability amplitudes must be 

accessed individually each time the function is called. Rather than waste a 

vector instruction to storo the sabvector C in a temporary array, it is faster 

and more convenient to use the following sequence of hardware calls to load 

them directly into registers: 

ASSIGN TEMP, C 

CALL QBLOD (TBMP,, Cl) 

CALL Q8IX(TEMP, 64) 

CALL QSLOD(TEMP,, CZ), etc. 

The constants needed to calculate the potential and force functions -are 

computed in advance and passed via labeled common. By roviewing an assembly 

listing of the program, oao can minimize the number of loads necessary to 
. 

access those constants. The ovaluatioa of U is easily done by a vector 

multiplication with a stored reciprocal mass. 

i can be conveniently calculated by evaluating tho derivative of a fully 

harmonic potent ial U’ . Thus wo have 

- gu U’(iUjH 
i 

= k(-2ui+ui-l+ui+i) where 

U 0 = u 1 ’ UN+1 = UN’ 

which can be effected by two vector additions and two vector multiplications as 

follows: 
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-$$mljl) = UTEMP(l;N) = K*(-2.*UTRbR’(l;N) + UTlWP(O;N) + UTEMP(2;N)) 

whoro UTEMP is a temporary array sot to the current values of U. Finally, 6 is 

obtained by replacing the n-l, n, and n+l elements of UTEMP by the proper 

values reflecting the Morse potentials at the diatomic. To accomplish this, it 

is necessary to access the five displacements (ui, i = n-2, n+2}. Altornative- 

lY, descriptors could be built to define the necessary vectors on U and the 

values stored in UTRMP. In this case, hardware calls would be required to set 

the first and last elements of UTEMP, to access the five elements of U around 

un, and to store values in the three middle positions. 

The conservation of total energy and probability gives us two necessary 

criteria to check the accuracy of the numerical solution. The total energy’ is 

given by 

E= UW]) + P*P/(2mA) 

+ lco12eo + lol12e 1 

+ lco12voo + 2Re{co+c )V 1 10 + “l’2Vll 

while total probability is simply 

P = Icol2 + lc112. 

(10) 

(11) 

which must remain unity. These checks were made every 1000 iterations using 

values calculated in the first pass through the derivative routine. To 

calculate U’ [Eq. (911, the following code is used: 

91 



ASSIGN TRW, .DYN. N-l 

TEMP= Q~VDELT(U;TEMP) 

EU= (K/2) l Q8SDOT(TEMP,TEMP). 

In Table I, sample iteration times and estimates of floating point 

operations per second aro given. The timings are for loops without I/O or 

accuracy checks. The results of several simulations are presented in the next 

Section. 

IV. Results of Simulations 

Our simulations all take the diatomic to be in its excited state and the 

lattice to be at OK initially. This means that all elements of X(0) are zero, 

except the real component of cl(G), which is unity. The time stop size is ;Ol 

2, where o is the transition frequency of the diatomic. The quantity of 

principal 2 interest here is Ic,l , the probability of the diatomic being 

excited. The physical constants for the system, which are chosen roughly to 

mimic EC1 in Ar, are listed in Table 2. The only variable quantifies are w and 

N. The transition frequency is chosen low in order to observe relaxation on 

the time-scale of the simulation. 

Figure 1 displays plots of 1~11~ versus time for a sampling of simulations. 

Frames (a)-(c) demonstrate the effect of increasing the diatomic’s transition 

frequency w, (cm -l) holding the number of lattice atoms fixed. It appears that 

the rate of loss of energy from the diatomic increases with increasing 

frequency up to a point. In fact, frame (c) suggests that the diatomic evolves 

to a metastable state in which it loses no further energy. To. test this 

hypothesis, we increased the number of lattice atoms to N = 2000. The result, 

shown in frame (f), bears this notion out. For purposes of comparison, we 
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include a simulation for a smaller lattice (N = 200). Hero wo seo the of foot 

of a pulse, which bounces back and forth, interfering with the monotonic 

relaxation of the diatomic. 

V. Conclusion 

These simulations represent the first application of a now description of 

the dynamics of chemical processes. Most previous approaches employ long-time 

asymptotic approximations, in which the coupling between the subsystems is weak 

and the decay is therefore very slow on the time scale of molecular motions 

(lo-%). The advancement of ultrafast laser spectroscopy now allows chemists 

to monitor directly fast relaxation processes (10-12s). In this regime, the 

coupling is more signif icant, and accurately solving the equations of motion 

becomes crucial. The HQE can be used for this purpose. However, any practical 

implementation will require a vector processor, such as the CYBEB 205. Our 

calculations would be essentially impossible on Par due University’s 

6500/6500/6600 system, for exampl‘e. The calculations would take SO-100 times 

longer, even if the storage for the vectors were available. 

The main feature of our CYBER 205 algorithm is a mainline that assigns 

storage at execution time. The vector function subprogram that evaluates the 

derivative can access the subvectors individually while the mainline processes 

the entire vector. This is accomplished by building the appropriate 

descriptors using the BREAJLlJP subroutine (see Appendix). 

Some preliminary results were presented in Section IV. Future research 

will deal with the actual mechanism of energy exchange between the two 

subsystems. Also planned are some N-state models with applications in surface 

chemistry. 
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Table I. Increase of calculation speed with increase 

of number of equations 

Equations Iteration Time Mega FLOPS 

24 .157 ms 6.1 

204 .204 ms 22.8 

a04 .256 ms 37.9 

2004 .671 ms 69.3 

4004 1.19 ms 77.7 

10004 2.75 ms 83.8 

20003 5.37 ms 85.6 
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Table II. Parameters of model system 

DAB 

aAB 

k 

mB 

9.25 I lo-l5 ergs 
DAC 

1 .a3 x 10’ CIII-~ 
aAC 

a14 ergs/cm' 
"A 

1.67 x 1O-24 g 
mC 

=: 1.24 I 10 -14 ergs 

= 1.66 -1 x 10' cm 

= 6.64 x 1O-23 g 

= 5.88 x 10’~~ g 
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C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

100 

Appendix 

SUBROUTINE BREAKUP(X,NSUB,LENSUB,DESSUB,NDIM) 

IMPLICIT INTEGER(A-Z) 

BREARUP- TAXES ADESCRIPTOR (X) AND RANUFACTURES OTHER 

DESCRIPTORS [DESSUB(N)] THAT POINT TO SUBVECTORS OF 

LENGTHS LENSUB WHICH CORPRISE THE VECTOR POINTED 

TO BY X 

ARGUMENTS: 

X- DESCRIPTOR To BE 'BROXEN UP' 

NSUB- NUMBER OF SUBVECTORS 

LENSUB- ARRAY CONTAINING THE SUBVECTGR LENGTHS 

DESSUB- ARRAY CONTAINING THE RESULTING DESCRIPTORS 

NDIM- DIMENSION OF LENSUB AND DESSUB 

DESCRIPTOR D,X,DESSUB(NDIM) 

DIMENSION LENSUB(NDIM) 

EQUIVALENCE (D,DTERP) 

ASSIGN D,X 

ADD= SHIFT( SHIFT( DTEMP,16 ), -16) 

DO 100 N=l,NSUB 

LENG'lU= SHIFT( LENSUB( ) 

DTEMP= OR( ADD,LENGTH ) 

ASSIGN DESSUB(N),D 

ADD= ADD + 64*LENSUB(N) 

CONTINUE 

RETURN 

END 
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Figure 1. One-dimensional model of a substitutional diatomic 
molecule BC in an othemise pure lattice of atoms A. 
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Figure 2. Plots of probability of finding diatomic in the excited 
state versus time for a selection of simulations of the system defined 
by parameters of Table 2. Time is in units of 0.18 picoseconds. 
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CHEMICAL APPLICATION OF DIFFUSION QUANTUM MONTE CARLO* 

Peter J. Reynolds and William A. Lester, Jr.+ 
Materials and Molecular Research Division 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

The diffusion quantum Monte Carlo (QMC) method gives a stochastic 

solution to the Schrodinger equation. This approach has recently been 

receiving increasing attention in chemical applications as a result of 

its high accuracy. However, reducing statistical uncertainty remains a 

priority because chemical effects are often obtained as small differences 

of large numbers. We give as an example the singlet-triplet splitting of 

the energy of the methylene molecule CH2. 

We have implemented the QMC algorithm on the Cyber 205, first as a 

direct transcription of the algorithm running on our VAX 11/780, and 

second by explicitly writing vector code for all loops longer than a 

crossover length C*. We discuss the speed of the codes relative to one 

another as a function of C*, and relative to the VAX. Since CH2 has 

only eight electrons, most of the loops in this application are fairly 

short. The longest inner loops run over the set of atomic basis 

functions. We discuss the CPU time dependence obtained versus the number 

of basis functions, and compare this with that obtained from traditional 

quantum chemistry codes and that obtained from traditional computer 

architectures. Finally, we discuss some pre1iminar.y work on restruc- 

turing the algorithm to compute the separate Monte Carlo realizations in 

parallel--potentially allowing vectors of unlimited length. 

*This work was supported in part by the Director, Office of Energy 
Research, Office of Basic Energy Sciences, Chemical Sciences Division of 
the U. S. Department of Energy under Contract No. DE-AC03-76SF00098, 
Director's Program Development Fund, Lawrence Berkeley Laboratory, and 
the Control Data Corporation. 

+Also Department of Chemistry, University of California, Berkeley, 
California. 
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1. BACKGROUND 

In recent years Monte Carlo methods have been increasingly 

applied to quantum-mechanical problems. Quantum Monte Carlo (QMC) 

methods fall into two major categories. Variational QMCI is a 

method of evaluating expectation values of physical quantities with a 

given (generally optimized) trial wave function YT. The procedure 

in effect amounts to evaluating a ratio of two integrals, although 

the actual Yonte Carlo procedure is generally more sophisticated. 

The second major category of QMC is the "exact" type.* In these 

latter approaches the SchrSdinger equation is actually "solved". It 

is not necessary to already have a highly accurate wave function in 

order to compute the expectation values. Properties of interest are 

in effect "measured" as the system evolves under the Schr6dinger 

equation. When a stationary state is obtained, averages of the 

measured quantities give the desired expectation values. 

Only recently have chemical calculations by exact QMC methods 

been carried out. 394 We will discuss here one such QMC method -- 

the fixed-node, diffusion QMC -- which we have been using in cal- 

culating molecular energies. In Section 2 we present the basic 

theory. Section 3 describes the algorithm. The implementation of 

this algorithm on the Cyber 205, its optimization, and results, are 

discussed in Section 4. 
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4 
2. BASIC THEORY 

The SchrBdinger equation may be rewritten in imaginary time, 

and with a constant shift in the zero of energy in the. following form: 

“y;$‘t’ = [DO2 - ‘-‘(El + ET1 ‘U&t) l 

Here D = a2/2me, R is the three-N dimensional coordinate vector 

of the N electrons, and V(E) is the potential energy (the Coulomb 

potential for a molecular system). Equation (1) is simply a 

diffusion equation combined with a first-order rate process, and thus 

may be readily simulated. The function Y(R-,t) plays the role of the 

density of diffusing particles. These particles undergo branching 

(exponential birth or death processes) according to the rate term 

[ET - V(!gl ‘y@). Thus, the number of diffusers increases or 

decreases at a given point in proportion to the density of diffusers 

already there. 

The steady-state solution to Eq. (1) is the ground-state 

eigenfunction of the Schradinger equation. Furthermore, the value of 

ET at which the population of diffusers is asymptotically constant 

gives the energy eiqenvalue Eo. The lowest eigenstate, however, is 

that of a 3ose system. In order to treat a Fermi system, such as a 

molecule, we need to impose anti-symmetry on Y(E). A method which 

does this, and at the same time allows us to sample more efficiently 

(to reduce our statistical error), is importance sampling with an 
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anti-symmetrized importance function Y I' The zeros (nodes) of YI 

become absorbing boundaries for the diffusion process, maintaining 

the anti-symmetry. A simple form for YI which gives the necessary 

anti-symmetry is a Slater determinant of molecular orbitals 

multiplied by a symmetric function of the coordinates. 

To implement importance sampling, one simply multiplies Eq. (1) 

by YI and rewrites it in terms of a new probability density f(k,t) 

given by 

The resultant equation for f can be written as 

af - = DV2f + [ET - E&R)]f - DV=[fFU(R)] . 
at (3) 

The local energy EL(R) and the "quantum force" FQ(R) are simple 

functions of lu,(IJ). Eq. (3), like Eq. (l), is a generalized 

diffusion equation, now with the addition of a drift term, due to the 

effect of F Q’ It is Eq. (3) that we solve stochastically. Using a 

Green's function approach, our diffusers are made to follqw a "random 

walk" (Markov chain) in such a way that their asymptotic distribution 

is given by the steady-state solution, f,(R), of Eq. (3). Properties 

of interest (such as the energy) are measured during the "walks", and 

are thus averages over the distribution f,(R). 

106 



3. ALGORITHM 

We present here an outline of the algoritnm for performing 

diffusion QMC. For more detail see Ref. 4. This algorithm is not 

structured specifically for the architecture of the Cyber 205. We 

will return to this point in the next section. 

(0) Initialization. First generate an ensemble of NC 

configurations of the N-electron system. Typically NC * 100-500. 

These coordinates may be chosen randomly, or more efficiently from 

the distribution This initial distribution is 

f(l?, t=O).O 

(1) Loop over blocks. In each block: 

(2) Repeatedly loop over the ensemble until the time in each 

configuration has reached the chosen target time. For each 

member of the ensemble compute the inverse of the Slater 

matrix. Then: 

(3) Loop over the electrons. Compute FQ for the current 

electron. IMove to 

r' = r + DrF 
Q+ x (4) 

where T is the discrete time-step size, and x is a 

3-dimensional Gaussian random variable with a mean of zero 
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and a variance of 2Dr. This corresponds to the diffusive 

motion. If the electron crosses a node, eliminate the 

configuration from the ensemble and continue loop (2) over 

the ensemble. Otherwise update the Slater matrix and its 

inverse, and continue loop (3). 

After all electrons in the current configuration have been 

moved, advance the time associated with this new configuration 

R' by T. Calculate EL(R'). Also calculate the branching 

factor, or multiplicity. 

M = exp (--r{[EL(R) + EL(R')I/2 - ET))* (5) 

Return M copies of this configuration to the ensemble. This 

branching, or birth and death process, corresponds to the rate 

term in Eq. (3). Weight all averages by M. Continue loop (2). 

After all members of the ensemble have reached the target time, the 

current block is finished. Use <EL> to update ET. Store <EL> 

and the other averages. "Renormalize" the ensemble back to its 

original size NC. (This is necessary because the population grows 

or shrinks exponentially. Although we have endeavored to make the 

exponent close to zero [cf Eq. (5)], asymptotically at large time tne 

population will either vanish or overflow the allocated storage.) 

Reset all averages to zero. Continue loop (1) for the desired number 

of blocks. 

(4) Average over blocks. 
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4. CYBER 205 IMPLEMENTATION. 

The problem we chose to study is the singlet-triplet energy 

splitting of the methylene molecule, CH2. CH2 is fairly typical 

of the molecules we have been studying by QMC, in terms of the number 

of electrons and the number of nuclei. As a result, most of the 

inner loops in this application are quite short. The longest inner 

loop runs over the set of atomic basis functions. With this in mind, 

we present our results on the relative performance of the Cyber 205 

and the VAX 11/730. To compare with the CDC 7600, we note that our 

code runs almost exactly ten times 

We have imp lemented the QMC a 1 

by simply transcribing our working 

The major impediment at this stage 

faster on the 7600 than on the VAX. 

gorithrn on the Cyber 205, initially 

program from the VAX to the Cyber. 

was the lack of unformatted I/O on 

the Cyber and, even worse, its inability to handle logical records 

longer than 137 bytes. After rewriting these portions of the code, 

the program finally ran. 

!Ilith automatic vectorization ooth on and off, the Cyber ran 

approximately 16 times the speed of the VAX. Apparently, any 

speed-up from vectorization of the longer loops was lost to the 

start-up time for vectorizing the short loops. It seemed clear 

explicit vectorization was required. Thus, as our next step, a 

long inner loops of constant length were written explicitly in 

that 

11 

vector 

109 



syntax, while short constant-length loops were left as 00 loops. 

Most loops in the code, however, are of variable length. These were 

all recoded in the form: 

IF (length .GT. C*) THEN 

[Vector code] 

ELSE 

[Scalar code] 

END IF. 

We present in Figure 1 our performance results as a function of 

the crossover length C*. At values of C* greater than 26 the scalar 

section of code is always being executed, and thus the curve flattens 

out. For C* less tnan approximately 16, it appears that vector 

start-up time hinders performance. The optimum crossover point 

appears to be around 16. The lowest of the three curves corresponds 

to the implementation described above. Subroutine calls are quite 

costly on the Cyber 205. Thus in the middle curve we show the result 

of removing two short subroutines (both written in IF-THEN-ELSE 

form) and substituting vector code directly into the calling 
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programs. The speed-up is fairly dramatic, providing a peak speed of 

close to 20 times the VAX (up from 17). 

Interestingly, although the compliler recognizes that A**2 should 

be replaced by A*A, inside of vector code A**2 calls the float-to-an- 

integer-power routine. Needless to say, this is costly. Essentially, 

changing one line of vector code from A **2 to A*A led to the improve- 

ment shown in the top curve. Clearly the improvement is most 

pronounced for small C*, where this line of code is being executed 

more frequently. 

As mentioned earlier, the longest inner loop is over the number 

of atomic basis set functions, n. Traditional quantum chemistry 

codes scale as n4 or n . 5 Thus increasing the size of the basis 

set can be very costly. In our QMC approach, the algorithmic 

dependence on n is linear. In Fig. 2 we plot the relative run times 

as a function of basis set size on both the VAX (upper curve) and the 

Cyber 205 (lower curve). Both curves are indeed fairly linear in n. 

However, the slope for the Cyber is almost flat. This smaller slope 

is due to an increase in the vector length rather than an increase in 

the number of machine instructions being executed. The result is a 

speed enhancement of 30 over the VAX (up from 20) by n=50. 

Although a factor of 30 over the VAX (or equivalently a factor 

of 3 over the 7600) is certainly good, it is nowhere near our hoped 
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for performance. This can be explained by the fact that even loops 

of length 50 are relatively short on the Cyber 205. Possibly more 

important, however, is that the relatively long inner loops constitute 

only a fraction of the code being executed. Thus, truly high speed 

for this kind of application requires on architectural rewrite of the 

code. 

Looking over the algorithm (cf Sect. 3) it is clear that the 

entire structure is highly parallel. This is a fairly general 

characteristic of Monte Carlo codes. Thus, on a parallel processor 

the loop (1) over blocks can be eliminated, and each block can be 

computed independently on a separate processor. There is no communi- 

cation required between processors until the very end, when [step.(4)] 

the average over blocks is computed. 

For a truly efficient Cyber 205 algorithm, however, loop (1) is 

too short to vectorize, generally ranging between 10 and 100. Loop 

(2) is much more desirable to vectorize, with NC = 100-500. To do 

so, this loop must be made innermost in the new algorithm. In other 

words, the entire ensemble must be treated in parallel. Furthermore, 

the vector length is dynam ic, since at each time-step the birth and 

death process Imodifies the ensemble size. We are currently develop- 

ing this fully vector code for future implementation. This code 

appears to have great potential for fully exploiting the vector 

capabilities of the 205. 
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Finally in Table 1, we present our results on the singlet-triplet 

energy splitting of methylene, and compare these results with theory 

and experiment. 
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TABLE 1, 

The ground-state (3Bl) and first-excited state (lA1) energies of metnylene. 

Method 3 B1-energy (hartrees) 1 Al-energy (hartrees) 

Hartree-Fock -38.9348 -38.8944 

CI-SD -39.1071 -39.0956 

CI-SDQ (est.) -39.122 -39.105 

QMC -39.129*0.004 -39.108*0.004 

Experimental -39.148 --- 

IAl - 3Bl energy (kcalbnole) 

CI 9.3-11.3 

Expt 8.5-19.6 

QMC 12.3f3.4 
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RELRTIUE PERFORHANCE 
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Figure 1. F&lative speeds of the Cyber 205 and the VAX 11/780 for 
quantum Monte Carlo calculations of the ground-state energy of CH2. 
The crossover point C* is the vector length below which variable- 
length loops are run in scaler mode. !rhus , for large C* these loops 
are all run in scaler mode,whereas for very small C*, vector start- 
up time hinders performance. The three curves correspond to differ- 
ent degrees of hand-optimization of the code. See text for details. 
Note that the curves interpolating the data points are simply poly- 
nomial fits to the data. The actual curve for a particular molecule 
is a set of steps at the values of the various loop lengths that 
occur in the problem. The fits can be considered an "average" 
behavior for this type of calculation. 
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CPU TIME vs VECTOR LENGTH 

IHE (ARBITRCIRY IINITS) 

Figure 2. CPU time versus the number of atomic basis set functions, 
n. Conventional codes scale as nx with X ~44-6 while QMC scales 
simply as n. Both the VAX and Cyber show this n dependence clearly. 
However, the slope for the Cyber is almost zero. At n=16 the Cyber 
is 20 times the speed of the VAX while at n=50 the Cyber is 30 
times faster. 
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Abstract 

New methods are introduced for improving the performance of the 

vectorized Monte Carlo SU(3) lattice gauge theory algorithm using the 

CDC CYBER 205. Structure, algorithm and programming considerations are discussed. 

The performance achieved for a 164 lattice on a 2-pipe system may be phrased 

in terms of the link update time or overall MFLOPS rates. For 32-bit arithmetic 

it is 36.3 usec/link for 8 hits per iteration (40.9 zsec for 10 hits) or 

101.5 MFLOPS. 
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1. Introduction 

Many important results for quantum field theories in general and, in 

particular, for the gauge theory of strong interactions known as Quantum 

Chromodynamics (QCD) have been obtained by formulating the dynamics on a 

space-time lattice. The lattice version of a quantized gauge field theory, 

as proposed by Wilson Cl], has the properties of introducing an ultraviolet 

cut-off independently of any perturbative expansion and of preserving 

manifest gauge invariance. It permits a variety of investigations by 

non-perturbative techniques, strong-coupling expansions [2] and Monte 

Carlo (MC) simulations [3] being the most notable ones. Monte Carlo 

simulations, indeed, have probably produced the most important results 

for QCD, being able to probe the structure of the theory in the domain 

where the transition between the strong-coupling behavior at large distances 

and the asymptotically-free behavior at small separation takes place 

Numerical methods must be used to explore the vary crucial domain 

of intermediate couplings, since there are no known analytical techniques 

for solving or even efficiently approximating gauge theories throughout 

that region. On the other hand the fact that quantum fluctuations on 

a finite lattice extending for n sites in four dimensions are given 

by integrals of a dimensio 

parameters in group space) 

importance sampling, i.e. 

possibility. 

nality 4n4ng (rig is the number of independent 

, which can easily exceed 2,000,000, leaves 

Monte Carlo simulations, as the only calculational 

Monte Carlo calculations are of a numerical nature, and quite 

demanding on computational resources. The simulation of a system with 

SU(3) gauge group (i.e. the system underlying QCD) on a lattice extending 

for n sites in each of the four space-time dimensions requires storage 

of 4n4 link variables, i.e. 4n4 SU(3) matrices, and the systematic 
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replacement, or "upgrading", of each of these matrices with new, updated 

values, for several hundred or several thousand sweeps of the whole 

lattice. One MC iteration is defined as a sweep of the lattice, i.e., 

one upgrade per link variable. A computation involving M MC iterations 

thus implies 4Mn4 individual upgrades of SU(3) matrices. The upgrading 

of each SU(3) matrix requires approximately 4,150 elementary arithmetic 

operations and 180 table look-ups (if 10 attempts at changing the link 

variable are made for each upgrade). For a lattice large enough for 

obtaining physically meaningful results, the amount of computation needed 

for a Monte Carlo simulation of QCD becomes extremely high. 

Because of the aforementioned difficulties, Monte Carlo simulations 

of QCD have been generally limited to lattices of rather small extent, 

a lattice of 84 sites already representing a large lattice with respect 

to the scale of most calculations. On the other hand, with the progress 

in the field, it has become apparent that one must definitely analyze 

larger systems to develop confidence in the numerical results. This need 

may be understood on physical grounds. If 2 GeV is considered as a 

universal energy for the effects of asymptotic freedom to begin manifesting 

themselves, one would like the lattice spacing to be smaller than (2GeV)-' 

(and the corresponding ultraviolet cut-off larger than 2GeV) i.e. smaller 

than O.lfm. Conversely, if the goal of the computations is to determine 

hadronic structure, the extent of the lattice should be larger than the 

typical size of a hadron. Taking this size to be (minimally) 1 fm, 

it becomes apparent that the parameter n ought to be larger, if possible 

substantially larger, than 10. With, e.g., n = 16 and M : 1000 the 

calculation of a MC simulation requires more than 10 12 operations not a 

small task even for the largest machines currently available. 
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The number of the data elements involved, and the amount of 

computations needed for manipulating this data, makes it worth while 

to investigate ways for vectoritation of the code. 

The purpose of this article is to illustrate the vectorization and 

implementation on the CDC CYBER 205 of a code for Monte Carlo simulations 

of the.SU(3) lattice gauge theory. (For previous implementations of 

vectorized code see Ref.4.) As will be discussed in more detail in 

the final section of this paper, the characteristics and performance are 

such that 1 MC iteration of a 164 lattice can be done in 10.72 seconds 

(corresponding to an upgrade time of 40.9 usec per SU(3) link variable). 

Thus, 164 and larger lattices can be considered for meaningful 

simulations of QCD. While we describe in this article the program for 

the basic Monte Carlo algorithm, we are currently using it, together 

with other vectorized codes, for a reevaluation on a large lattice, of 

several quantities of theoretical and phenomenological interest in QCD. 

The results of these investigations will be presented separately [S]. 

Here we proceed with a description of the computational algorithm and 

an outline of its vectorization in Sect. 2, with a more detailed 

account of the program in Sect. 3 and a summary of performance data in 

Sect. 4. 

2. The Monte Carlo Algorithm 

We consider a hypercubical lattice of ns sites in each of the 

three spatial directions and nt sites in the temporal one. The 

dynamical variables of the SU(3) gauge theory are 3x3 unitary- 

unimodular complex matrices, which are associated with the 4nlnt links 

of the lattice. We denote by Vi the matrix associated with the 
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oriented link coming out of the lattice site of (integer) coordinates 

X E (Xl sX~,X~SX~) in the direction u (u=l,2,3,4). The goal of the 

Monte Carlo algorithm is to produce a stochastic sequence of configurations 

of the system C(i), (a configuration being defined as the collection 

of all Ug), such that the probability P(C) of encountering any 

configuration C in the sequence approaches, after a reasonable 

equilibriation time, the distribution 

P(C) J exp{-S(C)3 , (2.1) 

where S is the action of the configuration C in that sequence. S 

is given by a sum over plaquette variables p , a plaquette being an 

oriented square of the lattice defined by the origin x and two directions 

lJ and v : 

5 = x.5 
Pp 

= 6 z(1 
P 

- f Re Tr Up) , 

where 

(2.2) 

(2.3) 

3 is the coupling parameter and z ,G stand for unit lattice 

vectors in the L and ‘J directions, respectively. When Eqn. 2.1 is satisfied, 

quantum mechanical expectation values of observables e, defined rigorously 

as averages over all possible configurations, namely 

123 



<6; = z -1 
I 

TI dU;) u(U)exp[-S(U)] 
X,!J 

(2.4) 

with 

Z = '( II Ui)exp[-S(U)] , 
1 

(2.5) 
X,lJ 

can be approximated by averages taken over the configurations generated 

by the Monte Carlo algorithm: 

6'(C(')) . (2.6) 

NO represents the number of initial configurations discarded in order 

to allow for the stochastic sequence to reach equilibrium. 

In our code we implement the MC algorithm following the method of 

Metropol 

replaced 

s et al [6]. Each individual dynamical variable Ui is 

by a new one uz" x according to the following procedure: 

candidate matrix Ui' is obtained from Ui by group multiplication: 

U,"' = RkU; , 

i) a net 

where Rk is an W(3) matrix randomly selected from a prepared set 

CR, , . . . , RF11 of M matrices, to be discussed later. 
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ii)' the change in action, AS induced by the variation IJF + Ui ' 

is calculated: 

AS = s(u;’ ,.. .)-s(u; ,... ); (2.7) 

iii) a pseudorandom number r with uniform distribution between 0 

and 1 is generated and 

;uQjJ . if 
X 

x r < exp(-AS) , 

$J = uu otherwise. 
X X 

The steps i) to iii) define what is ca ,lled a "hit" on one of the 

variables. These steps are repeated Nh (number of hits) times. 

link 

This 

completes the upgrading of one (link) variable UF . One MC iteration 

(or one sweep of the lattice) is executed when all the variables have 

been processed in this manner. 

A crucial consideration for the whole algorithm and also for its 

vectorization is that the calculation of the variation of the action 

AS involves only a few of the dynamical variables apart from Ui 

itself, namely those defined on the remaining links of the six 

plaquettes which share the link between x and x+c . It is 

convenient to be slightly detailed at this point and to introduce some 

terminology. Given the link from x to x+G there are three 

"forward" plaquettes incident on it, namely those with vertices 

LI ,. A A 
x, x+-i, X+!l+‘J and x+v , 
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(v taking the three values # u) and three "backward" plaquettes, 

namely those with vertices 

h 
x, x+lJ, x+1;-; and x-G , 

(see Fig. 1). 

We shall define as the "force" acting on Ui the sum of the expressions 

Fuv = Uu+A Uu A Uv 
f,x x+!J x+LJ x 

(corresponding to the forward plaquettes) and 

pJ vt 

b ,x = u;+;-;";-;ux-; 

(corresponding to the backward plaquettes) over the three values of 

VflJ 

(2.8) 

(2.9) 

(2.10) 

One can easily convince oneself that of the terms contributing to the 

action in Eqn. 2.2 all those containing UF can be written in the form 

BL.1 - f ReTr(Fg*Uz)] , (2.11) 

and therefore 
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As = - 4 ReTr[Fit(Ui'- Ui)] . (2.12) 

Thus, we become aware of two fundamental facts: 

i) once the force FI is calculated, the Nh subsequent hits on 

the link variable Uy can be done without any further recourse to the 

values of other U variables. 

ii) several upgradings can be done in parallel, provided only that the 

forces Fi required for the computation do not involve any of the IJZ 

variables that are simultaneously upgraded. 

While point i) is relevant for any MC simulation, point ii) acquires 

particular importance if one wants to write a vectorized code. Indeed, 

as we shall show, all Us: variables with fixed u can be separated into 

two sets such that the forces for one set only involve elements of the other. 

Then, all the Ut variables belonging to one set can be grouped together 

in an array and upgraded simultaneously. Finally one proceeds to upgrade 

the elements of the other set (the red-black or checkerboard algorithm 

[4]). We will see in the next section that the ability to separate 

the link variables into two independent sets is a key to efficient vector- 

ization. 

3. The Vectorized Implementation of the Algorithm 

The previous discussion has demonstrated that Monte Carlo lattice 

gauge theories are worthy candidates for vector processing. Until recently, 

however, people were doubtful as to whether the vector capabilities of current 
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supercomputers can be effectively utilized for such applications. The 

main source for this skepticism is the inherent conflict between random 

access to data, an integral part of a Monte Carlo process, and the strict 

order of data elements required for pipelined computations. In other words, 

unless data can be "gathered" at rates comparable to computation rates no 

efficient vectorization can be achieved. 

One of the major strengths of the CDC CYBER 205, and what makes it 

a particularly powerful Monte Carlo machine, is the ability to order a 

random collection of data by means of a vector instruction, namely, the 

"Gather" instruction. This instruction is equivalent to a series of 

random, or, indirect "load" operations on a serial computer. The 

Gather instruction uses a vector of integers as an "index-list" 

pointing to the elements to be fetched. These elements are stored 

in the order they have been encountered into an output vector. The 

result rate for the Gather operation is one element every 1.25 

cycles (a cycle, or clock-period on the CDC CYBER 205 is 20 nanoseconds). 

For a comparison, note that the floating-point arithmetic rate, excluding 

division, is one element every cycle per pipe for 64-bit operands. The 

CYBER 205 hardware also supports 32-bit operations with twice the 

result rate for vector floating-point operations. For example, on a 

two pipe machine 32-bit arithmetic is performed at a rate of 5 nsec 

per result, or 200 MFLOPS. 

The effective utilization of the computational tools build into 

the vector processor is closely related to the data structure, as are 

most of the important algorithmic decisions. It is, therefore, 

appropriate, at this point, to discuss the memory requirements. A 

3x3 complex matrix is represented by 18 real numbers. The constraints 
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of being unitary and unimodular reduce the number of independent para- 

meters to 8, but such a minimal representation of the Ut variables 

implies a substantial increase in the computational complexity. To obtain 

optimal performance it is useful to keep all the 18 values representing 

the real and imaginary parts of the elements of IJ: . For a lattice 

with ns = nt = 16 a configuration will be defined by 18 x 4 x 164 = 

4.718592 million values, which may be more than can be put in the fast 

memory of many computer systems. Fortunately, the sequential nature of 

the MC algorithm suggests that only a fraction of the variables need 

to be in memory at any one time. The others can be kept on disk. 

The factors which determine an optimal size for the partition between 

variables in memory and on disk are the following: 

i) the partition should not make the code unnecessarily complicated; 

ii) the I/O operations should not take longer than the actual computations; 

iii)sufficiently long vectors should be available. 

On the basis of the above requirements we decided to upgrade one 

space at a time, i.e. to upgrade all the 4nz variables UI with fixed 

time coordinate x4 , and then to proceed to the next x4 etc. We 

shall refer to this procedure as time-slicing and to the collection of 

variables with fixed time coordinate x4 as one time-slice of the system. 

If the variables with a given x4 = t are being upgraded, the 

calculation of the force requires knowledge of the Ui with x4 = t-l, 

x4 = t and x4 = t+l . Thus 3 time slices need to be in memory 

throughout this stage of the calculation. As a matter of fact, since 

I/O operations can proceed independently from CPU operations, it 
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is possible to achieve concurrency of I/O and CPU operations if 

extra memory buffer space is allocated for holding the x4 = t-2 slice 

(to be written out), and the x4 = t+2 slice (to be read in). The 

conventional way of implementing concurrent I/O is to allocate space 

for two more slices. The resulting five slices in memory act as a 

circular buffer as shown in Fig. 2. However, the virtual memory hardware 

on the CDC CYBER 205, and the supporting software provide the capability 

to swap data between disk and memory. Hence, the memory area of one 

slice only is needed to write out the x4 = t-2 slice, and read in 

the x4 = t+2 slice. Consequently, the total memory requirements for 

the link variables are thus 4 x n: x 4 x 18 locations. Allowing for some 

additional work-space we find that lattices with ns = 16 can be 

considered in a machine with 2m words (16m bytes) in full precision 

(64-bit words) and ns = 20 in half precision (32-bit words). The length 

in time does not constitute a problem any longer and lattices with any nt 

may be simulated. 

With the slicing mechanism in place we now turn to vectorization 

aspects of the code. In Sec. 2, the Red-Black ordering was introduced. 

The motivation for this choice merits some discussion. The computation 

involves, mainly, matrix multiplications. This operation is easily 

vectorized, but the matrices concerned are 3x3 matrices, and the resulting 

vectors are going to be 3 elements long. For efficiently vectorized code 

one needs to seek longer vectors. This results from the observation 

that the timing formula for a vector instruction may be written as 

(Start-up + 3-N) cycles (3.1) 
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where the start-up time is a constant, independent of the vector length. 

It amounts to aligning the input and output streams, filling up the 

pipelines up to the point where the first result is available and storing 

the last result. The start-up time is also independent of the number of 

pipe1 ines and whether 64-bit or 32-bit arithmetic is performed. On the 

CDC CYBER 205 it amounts to about 50 cycles, or 1 gsec. The “a.N” term 

is known as the "stream time". N is the number of elements in the vector, 

so that the stream time is proportional to the vector length. a is a 

constant associated with the number of pipelines and the arithmetic mode. 

Table 3.1 contains the a values for some relevant circumstances. 

It is now obvious that high performance is achieved by minimizing the number 

of "start-ups" as a consequence of using longer vectors, or, increasing 

N for each vector operation. 

The SU(3) matrices are too small as an object for vectorization; 

however, there are nl such matrices in every time slice. One cannot 

use all of these link values simultaneously because - 

i) updating each link requires all its irrrnediate neighbors, and 

ii) the correct convergence of the Metropolis process depends upon 

using "new" values as soon as they are available. 

The Red-Black (checker-board) ordering resolves this apparent recursive 

relationship. The separation of the Ui variables into two sets, for 

each value of u and at fixed x4 , is achieved by putting in the two 

sets all the variables belonging to links originating from odd and even 

sites, respectively, i.e. with x1 + x2 + x3 = 1 or 0 (mod 2). This 

assures the independence of the forces FE from the variables Ut being 

upgraded. On a lattice with ns = 16 the above separation gives a vector 

length of ni/2 = 2048, sufficiently large to insure almost optimal 
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performance (in fact, 91% and 95% in 32-bit and 64-bit arithmetic, 

respectively). The calculation of the force FI requires knowledge 

of the Ui variables associated with links neighboring the one under 

consideration. Because of boundary conditions , which we take to be periodic, 

the variables which enter the calculation of FE will not, in general, 

have a simple location-index relative to UI in the array of dimension 

nz/2 . This is easily remedied by the introduction of auxiliary 

integer-valued arrays, where the indices of the various neighbors of 

Uu 
X 

are prestored. The Gather instruction plays a crucial role in the 

way these index arrays are used. When Fi is evaluated, all the 

needed variables are gathered into temporary arrays, so that the indices 

of all elements entering into the computation of FF are the same, and 

this proceeds in a fully vectorized manner. 

Once,the Fy's are determined the algorithm for the upgrading 

of all the U';: (in the same set) is straightforward and completely 

vectorizable. The matrices R which are used for finding the new 

candidates IJY' , are Gathered according to an array of indices extracted 

at random from a table. The table contains M SU(3) matrices which have 

a distribution centered around the identity of the group and are obtained 

in the following fashion. For each value of i between 1 and M/2 

(M must be even) an eight component vector Vk with approximately 

gaussian distribution and <VE> = 1 is pseodoramdomly generated. The 

fourth-order approximation to Ri is given by 

R" - 
2 4 

i- 
ltiA-$-$+& 

(3.2) 
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where 

A = b ii VkXk * (3.3) 

'k are Gell-Mann's matrices (i.e., a set of generators of the Lie 

algebra of SU(3)) and b is a real parameter specifying the spread 

of the distribution. The final value for Ri is obtained by normalizing 

R0 i to a unitary-unimodular matrix. In general, if we denote the 

three columns of an SU(3) matrix by y1,F2 and "; the constraint 

of being unitary and uni modular is expressed by 

I2 = \";I2 = 1 IF1 

2 
rl . ;* = 0 2 

and 

ith the first two co Given a matrix R" w 

-0-o 
rlxr2 # 0 , we shall 

R with columns 

define as the nor-ma 

and 

= (+r2)* . 

-0 lumns rl 4 and r2 , with 

lized form of R" the matrix 

r /I- JO2 
1 = q/ ,rl I 

(3.4) 

(3.5) 
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The reason for the nonmenclature is due to the fact that, if R" differs 

slightly from a unitary-unimodular matrix, e.g. as a consequence of 

roundoff errors, then R is an SU(3) matrix close in value to R0 

imodular matrix R0 
i obtained by Thus, the approximately unitary-un 

truncated exponentiation in Eqn. 3 

matrix Ri by normalization. The 

.2 is converted to a proper SU(3) 

last M/2 matrices are obtained by 

(3.6) 

so as to insure that, together with any given matrix Ri , the inverse 

should also belong to the table. 

The procedure for normalizing the SU(3) matrices of the random 

table, as described above, is also applied, every few iterations, to the 

link matrices. This is done to insure that the group symmetry of the 

matrices is preserved regardless of rounding errors which may be 

introduced by the hardware after many arithmetic operations. This 

renormalization process is particularly important when the computations 

are performed using low precision arithmetic. It gives us confidence, which 

was also tested and verified, in using 32-bit arithmetic for our calcul- 

ations on the CDC CYBER 205. 

Once UF' is determined, using the table of random SU(3) 

matrices, the action difference is obtained by calculating, separately, 

ReTr(FzLUz) and ReTr(Fi;UE') 

(notice that ReTr(A'B) is the vector product of the arrays containing 
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the real and imaginary parts of A and B) , forming an array with 

exp[-AS) , comparing with an array of pseudorandom numbers and 

accepting or rejecting the change, via a masking operation, according 

to the outcome of the vectorized comparison between the random numbers 

and the exponentiated action differences. These steps are repeated 

for a prefixed number of hits before commencing the upgrade of the other 

set or the variables corresponding to different directions. 

The conditional acceptance of elements in a vector, or, the masking 

operation referred to above, is handled through the usage of a "bit-vector" 

(the CDC CYBER 205 is bit addressable and the software allotis the Fortran 

user to use this feature). It is exploited as a part of the vector 

instruction, and inhibits storing results where zeros are encountered- 

in the bit-vector. 

The reader should by now realize that many thousands of random 

numbers are required for each iteration. The conventional congruent 

method for generating random numbers is recursive, and may be described 

by 

yi+l = (asyi)mod(b) (3.7) 

where a is the "multiplier" and b is determined so as yi+l will 

be approximately the lower half of the coefficient of the product a.yi 

The nature of this calculation suggests that in order to produce N 

random numbers one has to repeat it serially N times. There is, 

however, a way to reproduce the same sequence of N numbers in 

parallel, using vector instructions [7]. Define a new multiplier by 
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I Ill IllI II Ill II lll-~IllIIlllllllllIIlllllllll 

A = (aN)mod(b) 

= (...(a*a)mod(b)*a)mod(b)...*a)mod(b) 

and let 

11 = (yl+‘“*‘YN) 

be the vector containing the first N random numbers. 

Then 

lit1 = (A*li)mod(b) 

(3.8) 

(3.9) 

(3.10) 

reproduces the same sequence of random numbers one gets with a 

repeated application of Eqn. 3.7 (the computation of Eqn. 3.10 requires 

only 3 vector operations on the CDC CYBER 205). 

To conclude this section, let us discuss the way matrix multiplication 

is done, being the most time-consuming aspect of the computation . First, 

the reader will remember that we do not vectorize the matrix multiplication 

as such, but, rather, perform the operations on many matrices in parallel, 

where for each matrix the "scalar" sequence of operations is followed. 

When computing the products of two SU(3) matrices, one need not 

evaluate all the columns of the result, since the third column of the 

product matrix (which is again unitary-unimodular) is related to the 

first two by Eqn. 3.4. In the code we have exploited this fact whenever 

possible. It is particularly advantageous when several SU(3) matrices 

must be multiplied together, since one may limit the calculations to 

two columns out of three in all intermediate products and simply 

reconstruct the third column of the final result as shown in Eqn. 3.4. 
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Finally, all complex arithmetic has been done in terms of real 

variables, separating real and imaginary parts (which would also 

result in a more efficient code for a scalar machine), and we have 

used the identity 

(A+iB)(C+i D) = (A+B)(C-0)-BC + AD + i(BC+AD) (3.11) 

to perform the product of two complex matrices in terms of three real 

multiplications and five real matrix additions. Using complex 

arithmetic the product of two matrices would require four real 

multiplications and two additions. Due to the fact that matrix 

multiplication requires 2N 3 operations, where N is the dimension 

of the matrix, and matrix addition requires only N' operations, our 

method pays off even for N = 3 . 

A schematic outline of the flow of the calculations is shown 

in Fig. 3. 

4. Performance and Timings 

The figures quoted here are based on runs executed on a two-pipe, 

2m 64-bit words CDC CYBER 205. They apply to a 164 lattice (ns = 16, nt = 16), 

SU(3) gauge theory with 10 hits per link upgrade (unless stated explicitly 

otherwise). We present performance figures for both 64-bit and 32-bit 

arithmetic operations. In both modes the exponentiation and the generation 

of random numbers were carried out using 64-bit arithmetic. It should be 

noted here that due to our slicing .mechanism the 32-bit version requires 

real memory of only 852,000 words (64-bit words, or 6.8m bytes), so it 

actually fits comfortably on a lm words system. With these parameters 
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the code performs at 98% CPU utilization. The 64-bit version requires, 

of course, twice as much memory. 

In Table 4.1 we give the percentage of the execution time for the 

two arithmetic modes spent in the force (FE) and the Metropolis 

updating calculations. It becomes clear from these figures why it is 

worth while using a single force computation for a number of attempts at 

updating (rather than the one attempt proposed by the original Metropolis 

method). 

It should be added here the normalization procedure discussed in 

Sec. 3, performed every 5 iterations adds only 0.74% and 0.59% in 

64-bit and 32-bit modes, respectively, to the total execution time. 

Table 4.2 presents a percentage breakdown of the code by operation 

We. The reader will notice that the Gather, random number generation 

and the exponentiation operations are more heavily weighted in the 32-bit 

mode compared with that of the 64-bit mode. These three types of 

operations perform at the same rate in both modes. The last two 

execute in 64-bit mode in both versions of the code. The Gather instruction 

performs at the same rate regardless of whether the operands are 64-bit 

or 32-bit variables. This is because the performance of the Gather 

operation is driven by memory access (and not by computation complexity). 

The matrix multiplication, being made up of floating-point operations 

only, executes at near peak rate of 95 MFLOPS and 182 MFLOPS for the 

64-bit and 32-bit modes,respectively. The effect of vectorizing the 

random number generator can be illustrated by noting that this operation 

amounted to 6% (64-bit) and 11:; (32-bit) of the total time when it was 

not vectorized. The "action" involves taking the real part of the 

trace of products of SU(3) matrices (purely floating-point operations). 

The "acceptance" is the portion of the code where the conditional acceptance 
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of new UE matrices occurs under the control of a bit-vector 

created for that purpose. 

The actual time for one iteration of the 164 lattice 

with 10 hits is 16.27 sets. (64-bit) and 10.72 sets. (32-bit). This 

amounts to a substained performance rate of 66.8 MFLOPS (64-bit) and 

101.5 MFLOPS (32-bit). Another way, commonly used by physicists, to 

express the performance of Monte Carlo lattice gauge theories implemented 

on a computer system, is the link update time, i.e., the time needed 

to update one link of the lattice once. This measure is useful for 

comparisons since it is independent of the lattice size. The link 

update times (in usecs.) for our implementation are given in Table 4.3. 

These figures may be compared to a link update time of about 1,100 

usecs on the CDC 7600 computer system with a highly optimized code. 
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Table 3.1. Stream rate proportionality factor (a) . 

2 l/2 l/4 
4 l/4 7/8 

Table 4.1. Breakdown by percentage of sections 
of code. 

I 

64-bit ! 32-bit I 

force 

ioaate 

I 
43.49 

I ( 

I 
42.46 I 

I 
56.40 : 57.40 

Table 4.2. Breakdown by percentage of the main operation 
types. 

operation type 64-bit 

matrix multiplication 58.33 47.05 

Gather 20.78 29.27 

random number generator 0.95 1.83 

exponentiation 7.43 11.72 

action 5.93 4.70 

acceptance 3.62 3.01 

32-bit 
I 

Table 4.3. The upgrades times for a link (in vsecs). 

number of hits '64-bit 32-bit 

10 62.1 40.9 

8 55.1 36.3 
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x+;L-h, 

Figure 1. "Forward" (upper half) and 
"backward" (lower-half) plaquettes in the 
P-V plane, where x 5 (x1,x2,x3,x41 is a 

point in our four-dimensional lattice. 
This is one out of three such planes which 
can be formed in a four-dimensional space. 
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Figure 2. The I/O scheme. In our implementation the "in" and "out" boxes 
occupy the same physical memory. 



FLOW CHART 
new iteration I 

NEW TABLE 
new time-slice 

INITIATE PAGING 
I “colors”/directions (8 1 
I 

“FORCE” MATRICES 

METROPOLIS UPGRADING 
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Figure 3. Schematic description of the computational 
process. 
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* Adapting and designing mathematical software to achieve 
optimum performance on the CYRER 205 will be discussed 

* Comments and observations are made in light of recent work 
done at the Center for Numerical Analysis on 

- modifying the ITPACK software package 

- writing new software for vector supercomputers 

147 



Research goal - develop very efficient vector algorithms and 
software for solving large sparse linear systems 
using iterative methods 

(older) SCALAR APPROACH - develop algorithms that minimize 
either number of iterations or arithmetic operations 

* Not necessarily the correct approach for vector computers * 

(newer) VECTOR APPROACH - avoid operations such as table 
lookups, indirect addressing, etc. that are inefficient on a 
vector computer, i.e., non-vectorizable 

* Fully vectorizable code may involve more arithmetic operations 
but can be executed at a very high rate of speed * 

* Advances in high performance computers and in computer 
architecture necessitates additional research in mathematical 
software to find suitable algorithms for the supercomputers of 
today and of the future * 
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THE VECTORIZATION OF THE ITPACK SOFTWARE PACKAGE 

Scalar ITPACK: 

package for solving large sparse linear systems 
7 iterative algorithms available 
sparse storage format used 
Kincaid, Respess, Young, & Grimes [1982] 
ITPACK 2C (ALGORITHM 586) in T.O.M.S. 
"Transactions on Mathematical Software" 

VECTORIZATION: 

- First step: look for obvious vectorization changes since this 
was a large package of over 11,000 lines of code and we did not 
want to completely rewrite it 

- Vector ITPACK (standard Fortran version): used a minimum of 
vector syntax available in CYBER 200 Fortran for a portable 
version of Vector ITPACK 2C 

- Vector ITPACK (CYHER 205 version): a modified version of 
Vector ITPACK written using CYBER 200 Fortran vector syntax 
where possible 

149 



A.I)A.PTING SCALAR ITPACK 2C FOR HIGH PERFORMANCE COMPUTERS 

- DO loops which had been unrolled for scalar optimization were 
not recognized as vectorizable by optimizing vector compilers 

- These loops were rewritten as simple tight DO loops so that 
they would be executed in vector mode 

- The sparse storage scheme used for the matrix in Scalar ITPACK 
was row-oriented and inhibited vectorization (The IA-JA-A data 
structure as in Yale software YSMP used.) 

- A column-oriented data structure was used in Vector ITPACK to 
increase vectorization (The COEF-JCOEF data structure as in 
Purdue software ELLPACK used.) 

- The version of Vector ITPACK specifically for the CYBER 205 
was tested on the CYBER 205 at Colorado State University (CSU) 
and has been added to their Program Library 

- The improvements in time of the vector syntax version over the 
one in standard Fortran were not as significant as we had 
anticipated 

- The automatic vectorization available in the CYBER 205 Fortran 
compiler did a very good job of optimization and vectorization 

Moral: vector syntax best when used in designing and writing 
new code 
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PROBLEM: 
U +2u =o 

xx YY 

U = 1+ xy 

on S=(O, 1)x(0,1> 

on boundary of S 

Discretization: standard 5-point finite difference formula 

-6 
Stopping Criterion: 5.0 x 10 

Mesh Sizes: l/16; l/32; l/64; l/128; l/256 

Number of Unknowns: 225; 961; 3969; 16,129; 65,025 

Computer: CSU CYBER 205 

CYBER 200 Fortran: Large pages, unsafe vectorization 

Scalar ITPACK (unrolled DO-loops & YALE storage used; 
T.O.M.S. version) 

Modified Scalar ITPACK (rolled DO-loops & minor changes: 
Q8SDOT used) 

Vector ITPACK (rolled DO-loops, ELLPACK storage, & 
CYBER 200 Fortran vector syntax used) 
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TABLE I: CHANGING SPARSE STORAGE 

(Iteration .Times in Seconds with H = l/64) 

Method Iterations 

(Natural Ordering) 

JACOBI CC 178 
JACOBI SI 362 
SOR 216 
SSOR CG 34 
SSOR SI 43 

(Red-Black Ordering) 

2.509 2.184 .262 
5.214 4.480 .580 
4.700 4.597 2,453 
1.976 1.788 .831 
1.791 1.682 ,970 

JACOBI CG 178 2.402 2.056 .268 
JACOBI SI 362 4.987 4.209 .590 
SOR 196 4.110 4.017, .523 
SSOR CC 341 20.327 18.472 2.177 
SSOR SI 196 7.734 6.690 .701 
RS CG 90 1.445 1.358 118 
RS SI 182 2.980 2.779 :223 

Scalar Modified Vector 
ITPACK Scalar ITPACK ITPACK 

152 



TABLE II: CHANGING PROBLEM SIZE 
(Number of.Iterations) 

Method H= l/l6 l/32 l/64 l/l28 l/256 

(Natural Ordering) 

JACOBI CG 49 94 178 330 629 
JACOBI SI 56 179 362 772 1372 
SOR 50 104 216 422 872 
SSOR CG 16 22 34 51 73 
SSOR SI 19 29 43 61 88 

(Red-Black Ordering) 

JACOBI CG 49 
JACOBI SI 56 
SOR 52 
SSOR CG 34 
SSOR SI 51 
RS CG 25 
RS SI 42 

94 
179 
1 O-1 
62 

107 

ii: 

178 330 629 
362 772 1372 
196 396 839 
341 1058 3061 
196 373 752 

90 167 321 
182 375 704 
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TABLE III: CHANGING PROBLEM SIZE 

(Iteration Time in Seconds) 

Method H= l/l6 

(Natural Ordering) 

JACOBI CG .OlO 
JACOBI SI .014 
SOR .035 
SSOR CG .027 
SSOR SI .029 

(Red-Black Ordering) 

JACOBI CG .OlO 
JACOBI SI .013 
SOR .Oll 
SSOR CC .018 
SSOR SI .021 
RS CG .006 
RS SI .008 

l/32 l/64 l/l28 l/256 

.040 .251 1.800 14.115 
,091 .560 4.196 28.741 
.292 2.446 19.828 164.940 
.133 .828 4.953 28.157 
. 163 . 967 5.583 32.249 

.041 

.091 

.066 

.075 
113 

:019 
.033 

.257 1.847 14.511 

.571 4.277 29.394 
,475 4.028 34.939 

2.105 25.779 302.712 
,663 4.452 36.053 
109 

:207 
.757 5.981 

1.557 11.881 
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COMMENTS ON TABLE I 

- Two versions of Scalar ITPACK were compared with the CYJ3ER 205 
version of Vector ITPACK 

- Mesh size H = l/64 used for all runs 

- Scalar ITPACK: unrolled DO-loops used in basic vector 
operations for increased optimization on scalar computers 

- Modified Scalar ITPACK: standard tight DO-loops used 

- Vector Fortran compiler recognizes tight loops as vectorizable 
but not unrolled loops 

- A slight increase in speed from Scalar to Modified Scalar 
version 

- Vector ITPACK uses tight loops, Fortran vector syntax, and a 
column-oriented sparse storage scheme 

- This data structure allows the matrix-vector product operation 
to vectorize to a great extent 

* Considerable improvement in performance from scalar to vector 
version of ITPACK * 
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COMMENTS ON TABLE II & III 

- These tables are results of using Vector ITPACK on the same 
problem with varying mesh sizes 

- The number of iterations increase as the problem size increase 

- Comparisons based on number of iterations misleading as to the 
best method! 

- On scalar computers, SOR with natural'orderlng is widely used 
while JACOBI is not but on vector computers . . . 

- Most efficient method on the CYBER 205: 

JACOBI CG method when natural ordering 0 used 

RS CG when red-black ordering is used 
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SCALAR ITPACK vs. VECTOR ITPACK 

- Total time for each method is not significantly greater than 
the iteration time in the,vector version (this was not the case 
in the scalar version) 

- Only N additional workspace locations required for the vector 
version over the scalar version 

Faster scaling and permuting of the system with the 
column-oriented sparse storage scheme 

- Improved performance of the SSOR methods with the red-black 
ordering in the vector version in spite of the greater number of 
iterations 
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A PRE-CONDITIONED CONJUGATE GRADIENT PACKAGE 

Thomas C. OPPe ’ a graduate student atUT Austin, is working on 
a package which allows flexibility in the choice of basic 
methods and acceleration schemes. 

The package has been designed to make the addition of further 
preconditionings and acceleration schemes easy. 

Particular attention has been paid to the choice of matrix 
storage schemes with a view to maximizing vectorizability. 

Features of Package: 

- Conjugate Gradient Acceleration 

- Pre-conditioning matrix Q (Jacobi, Symmetric Successive 
Overrelaxation, Reduced System, Incomplete Cholesky, Modified 
Incomplete Cholesky, Neumann Polynomial, Parameterized 
Polynomials, Other pre conditionings planned such as Incomplete 
Block Cyclic Reduction) 

- Realistic Stopping Tests 

- Automatic estimation of iteration parameters with adaptive 
procedures 

- Two possible data structures allowed 
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DATA STRUCTURES 

Data structures which allow vectorizatlon to varying degree: 

EXAMPLE: 

4 -1 -2 
A= -1 4 0 

-2 0 4 
0 -2 -1 

0 
-2 
-1 
4 

ELLPACK Data Structure: 

4 -1 -2 
COEF = 4 -2 -1 

4 -1 -2 
4 -2 -1 

1 2 3 

:2 4 1 
3 4 1 
4 2 3 I 

- matrix-vector product vectorizes with the use of gathering 
routines 

JCOEF = 

- operations such as forward (back) substitutions using lower 
(upper) triangular matrices do not vectorize 

DIAGONAL Data Structure: 

4 -1 -2 JCOEF = (0, 1, 2) 
COEF = 4 0 -2 

4 -1 * 
4 * * 

- the matrix-vector product operation vectorizes without the use 
of gathering routines 

-. operations such as forward (back) substitution and 
factorizations vectorize to some extent 
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Abstraot 

Two of the most chrlleagiag problems of Orgrao- 

not~llic chemistry (loosely defined) sre pollution 

control with the large sp8co volooitirs needed rad nit- 

rogea fir8tioa. a proooss so capably dose by nature 8ad 

so rel8tirely poorly done by m8a (industry). For 8 

compot8tioa81 ohonist theso problems are on tho fringe 

of rhrt ir po8sibl8 with COavOatiOa81 OOmpUtOts (18rgo 

nodols aoodod and roourato eaorgotias required). A 

summary of tho rlgorithmio modifie8tion nredod to 

8ddross these problems oa a vector processor such as the 

Cybor 205 8nd 8 sketoh of our fiadiags to d8te on doNOr 

o8t8lysis 8ad nitrogen fixation 8ro presontod. 
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Introduction 

Two of the most challenging problems in Organometallic chem- 

istry (loosely defined) are pollution control with the large 

space velocities needed and nitrogen -fixation, a process so 

capably done by nature and so relatively poorly done by man 

(industry). For a computational chemist these problems (and 

other similar problems) are on the fringe of what is possible 

with conventional computers (large models needed and accurate 

energstics required). The advent of vector processors such as 

the Cyber 205 is making such studies feasible. A summary of the 

algorithmic modification needed to address these problems on a 

vector processor is presented in section I, a sketch of the 

findings to date for deNOr catalysis is presented in section 

11,and finally a sketch of the nitrogen fixation results is 

presented in section III. 

I. Algorithrie Nodifiostion. 

The advent of vector processors is leading to a reexamination 

of fundamental computational algorithms of general use to comp- 

utational chemists and the redesign of large scale codes. The 

present work illustrates both processes for the Cyber 205 comp- 

uter. Reexamination of fundamental algorithms is illustrated 

with an examination of the similarity transform, a matrix oper- 

ation of use to computational chemists. Large scale code rede- 

sign is examined through the implementation of a highly vec- 

torized MC-SCF code. 

A. Similarity Transform. A common sequence of matrix operations 

is the similarity transform 

c = AT B A (1). 
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For computational chemistry applications the matrices B and C are 

usually symmetric and generally stored in lower diagonal form. If 

the initial B matrix is expanded from upper diagonal form to full 

matrix representation vector operations are possible for both 

matrix multiplications. The linked triad instruction on the Cyber 

205 is utilized for the first matrix moltiplication and a vector 

dot product operation is used for the second matrix maltipli- 

cat ion. In principle one could transpose matrix A and to use the 

1 inked triad instruction for both matrix multiplications; 

however, in this case since we only want slightly more than half 

of the final results the vector dot product is preferable as it 

permits selective manipulation of the column indices I and J. As 

is apparent from Table I the vectorixed matrix transformation 

represents a substantial improvement over scalar mode with 

enhancements ranging from a factor of 10 to a factor of 40. Note 

for the 300x300 matrix case we are still approximately a factor 

of 2 off the maximum rate for the Cyber 205. The consideration 

of an algorithm where several matrices are transformed at once is 

in order. In addition it should be noted from Tabl’e I that the 

expansion from lower diagonal form does not add a significant 

cost (less than 10 percent). Finally, it should be apparent that 

the MFLOPS rate will be independent of the number of orbitals 

involved (indices I and J); the vectoriaed loops run over number 

of functions not orbitals (indices K and L). 

B. SCP Coding Considerations, The fundamental kernel of self 

consistent field (SCF) codes in generallg2 is the energy 

expression 
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E’l = f Df hij + f D:i(ikljl) 
i,j i.j 

k, 1 
where 

m 
h 

ij = E C;C; <X,~h!X,> 
PDV 

(51, 

(6) 

m 
(ikljl) = E CtC$CiCA <Xp(l)Xa(2)Ir~2 Ixvmx,(2)> (7) 

cI,v,a.n 

The integrals <X,,lhlX,> and <X,Xolr~2!X,X,> need only be 

evaluated once (for a given geometric point), stored conven- 

ient ly, and repeatively accessed during the orbital coefficient 

(Ci) and density matrix element CD:;D:i) optimization stages. 

For the Restricted Hartree Fock (RHF) wavefunction D: = 2, Dij = 

2, D;i, - -1, and the remaining terms are zero. 1 For wave- 

functions beyond RHF the wavefunction optimization step repre- 

sents a vast majority of the time needed to variationally deter- 

mine E, that is, the calculation of the XV integrals is usually 

relatively insignificant. 2 For this reason initial vectorization 

efforts have concentrated on enhancing the time intensive stages 

of an WCSCF (multiconfiguration SCF) program. It is generally 

accepted’ that one of the most time intensive steps of a general 

MCSCF code is the 4 index transformation needed to convert the X, 

integrals to 0i integrals where 

@i gE,ctx~ (5). 

On scalar processors only the unique integrals are stored (the 

Canonical list) and the loops are structured so as to minimize 

the number of multiplications performed. On a vector processor 
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such as the Cyber 205 this step simply amounts to two sequential 

applications of the matrix transformation described in (1). This 

transformation will proceed at vector speed provided that for a 

given ij pair all kl integrals are available fdr k>l (this 

corresponds to an effective doubling of the integral file from 

its canonical length). This expansion of the canonical integral 

tape is accomplished through a straightforward two level bin sort 

written to take advantage of the 2 million 64 bit words available 

on the Cyber 2053. Since the vectorizable portions of this 

integral transform are contained in the matrix transform 

discussed above, the timing information in Table I applies here. 

Four index transformations for 50 basis functions will proceed at 

28 MFLOPS and 300 basis function transformations in general will 

achieve 82 MFLOPS. Enhancements over scalar computation on the 

Cyber 205 will range from a factor of 9 to a factor of 34 for 50 

to 300 basis functions. For example, a full integral 

transformation for 50 basis functions will maximamly take 28 

seconds and for 100 basis functions 10 minutes on the Cyber 205. 

For a wide class of useful wavefunctions (open-shell HF and 

perfect pairing-generalized valence bond [GVB-PPI are two such 

examples) the one- and two- electron density matrices Df and Dii 

are expressible in diagonal form;’ that is, the only nonzero 

elements are 

D: = 2fi, Di{ = aij, and Di{ = bij 

The energy expresion (2) simplifies to 

(6). 

E = 2f fihii + En(aijJij + bijKij1 
i i.j 

(7). 
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where 

and a step where independent occupied orbitals are mixed through 

pairwise rotations. 5 The OCBSE step utilizes terms 

representable as a vectorizable summation of Ji and Ki operators 

<XpIJiIXv> and <XCIIKiIXp> (9) 

where 

<xP IJilXv> = 1 Cf,Cf (pvlan) 
u, n 

(10). 

<xP IKilXv> = 1 Ci,CA (palvn) 
cr,n 

J ij = (ii/jj) and K.. = (ij/ij) 
1J (8) 

are the usual Coulomb and exchange integrals. Restricting our 

attention to this class of wavefunction leads to particularly 

siaple variational equations 1 partitionable into a step where 

occupied and virtual orbitals are mixed variationally (OCBSE)4 

That is 

<xplEilxp> = E aij<XpIJjIXv> + bij<XpIKjIXv> (111, 
j 

where a set of loops can be written (which are in linked triad 

form and will run at >170 MFLOPS for more than 50 basis 

functions) to evaluate the Ith hamiltonian (K runs from 1 to 

n(n+1)/2). 

DO 300 J=l,NHAM 
A = A(I,J) 
B = B(1.J) 
DO 100 K = 1, RXS 

100 H(K)=H(K)+A*AJ(K.J) 
DO 200 K=l,MXS 

200 H(K)=H(K)+B’AK(K,J) 

(12) 

As the rotations step utilizes a subset of the above integrals, 

the needed vectorization effort is narrowed down to rapidly 
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generating the terns in (10). If all urn terms a>n are stored 

for a given pv the double sums in (10) can be reduced to a single 

dot product over a combined index y of length n(n+1)/2 

IJiIX,) = E DfJt’ 
I 

<xP 

<xP IKiIX,> = E DtJt’ 
Y 

(13) 

where 

JPV Y = (pv/un) (14). 

Kpv s 
Y ((gcr/vn) + (un/vo) )/2 

Currently the Di Y are precalculated, stored, and used for an 

entire SCF iteration. Formulating the problem as in (13) permits 

vectors ranging from 1275 for 50 basis functions to 45150 for 300 

basis functions. This step will function at between 80 and 100 

MFLOPS representing enhancements of between 40 and 50 over scalar 

computation on the Cyber 205. Table II summarizes the timing for 

calculations ranging up to a 79 basis function calculation con- 

sisting of 4096 spatial configurations; that is, a GVB-PP(12/24) 

wavefunction.’ If the calculation were stopped after the RHF 

step the SCF would represent less than 1% of the computational 

effort. Overall the GVB(12/24) wavefunction optimization repre- 

sents 1445 of the total effort. This is in sharp contrast to 

computations on scalar computers where this step would account 

for greater than 95% of the effort. The timing for an SCP iter- 

ative cycle for three cases is broken down in Table III. Note 

that the time needed to generate the terms in (13) is comparable 

to that needed to diagonalize the variational hamiltonians 

(OCBSE). 
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II. .DeNOx Catalysis. 

The catalytic reduction of nitrogen oxidos has bocomo inorer- 

singly important in recent ports doe to legislation aimed at 

6 reducing emission levels from non-biological sources . As Nitric 

Oxide is the major NO, component of exhaust streams 7 research has 

focused on the reduction of nitric oxide. Both homogeneous and 

heterogenous deNOx studios have boon performed 8-11 . The use of 

base-netal catalysts is of particular interest duo to their ready 

availability and low cost. A transition metal ion of singular 

importance in pollution oontrol is Fe(II) either as the bulk 

oxide or ion oxchangod into zoolitos. Thoso Iron systems have 

been demonstrated to catalyxo tho conoorsion of nitric oxide to 

nitrogon with a co-roaotant suoh as CO or H2 8,9 . The mechanism 

originally proposed by Sholef and Kuamsr 12 consists of a two 

stage oxidation reduction soquonoe. The initial stop involves 

the coupling of two nitric oxides to form nitrous oxido plus an 

Iron oxide. 

2N0 - N20 + ‘0’ (15) 

The thus formod nitrous oxide is rapidly reduced by tho cata- 

lyst8b,8d.10 . 

N20 - N2 + ‘0’ (16) 

Completing the cycle tho Iron oxide is reduced by reaction with 

carbon monoxide forming oarbon dioxide plus the regenerated cata- 

lytic site. 

‘0’ + co - co2 (17) 

Efforts have primarily been directed at characterizing reac- 

tion (15) as this is likely to be the kinetically most diffiault 



. 

stop8d. For horogonoous systems (15) has boon suggostod to 

involve an intrrmolocular coupling of nitrosylr to form a 

dinitrogon dioxido ligand’la which rearranges to a bound cis 

hyponitrite. 

Y 
< - 

/OLN 

- "\,a 
(18) 

\ 

1 2 3 

Metal hyponitrites have been established to either decompose to 

nitrous oxide and the metal oxide13a or react with carbon 

monoxide to from carbon dioxide and nitrous oxide 13b-c . 

It should be stressed that transition metal dinitrogon di- 

oxide complexes have never boon isolated nor unambiguously 

detected. Further, only a single mononuclear transition metal 

hyponitrito complex has boon idontif iedlfb. 

In this section we report energetic support for the reaction 

sequence (18) for a model Fe(II) system: the dinitrosyl complex 

of Iron dichloride FoC~~(NO)~~~. Tho relative onorgotics15 and 

goomotries16 for the chosen complex 1, its coupled cognate 

dinitrogon dioxido complex 2, and the cis hyponitrito product 3, 

are discussed below. We find that the coupled products are 

potentially accessible; 2 is only 29 kcal/mol higher in energy 

than 1 and 3 only l nothor 19 kca.l/mol higher. Those spacies. 

though unobsorvod, should be viable given an appropriate ligand 

backbone. Addition of waters of hydration profoundly affects the 

relative energies of tho hdyratod forms of 1, 2. and 3 (4, 5, and 

6 respectively). We find that intermediates 3 and 6 are 

thermally accessible. Intermediate 3 is 24 kcal/mol more stable 
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than 4 and 6 is only 4 kcal/mol above 4. This is not suprising 

as 1 is a 16 electron syston. 2 is a 14 electron system, and 3 is 

a 12 electron system (unusual participation by the pi lone pairs 

was not observed in the wavofunction of 3 or 6). 

A correlation of the bonding orbitals demonstrates that the 

coupling reaction 1 to 2 or 4 to S will bo thermally allored 

(occupied reactant orbitals correlate with occupied product orb- 

itals17). Further, the LUHO is a non-bonding d orbital of B, 

symm etry indicating that this oorrolation diagram will be valid 

for systems with up to 2 moro electrons. Finally, cue of the 

high lying occupied orbitals is a non-bonding Al d orbital 

suggesting that the correlation diagram will be valid for systems 

withuptotwo fewer electrons. Thus groupV1 through groupVII1 

metal dications are potential active catalysts. 

Because Fo(I1) dinitrosyls are structurally oncharacterized, 

because only a single transition metal hyponitritc complex has 

been structurally characterized, and because dinitrogon dioxide 

complexes are unprecedented a detailed discussion of the bond 

distances and bond angles that were optimized is in order. We 

find the N-Fe-N angle for the dinitrosyl is 94.9 degroes, as 

expected for a IM(N0)21* system16b. The Fe-P distance of 1.69 A 

is in agreenent with experimental structures for linear Iron 

dinitrosyls (1.66 Alga to 1.71 A18b). For the dinitrogen dioxide 

complex 2 we find a N-N distance of 1.53 A, longer than normal N- 

N single bonds (ranging from 1.402 A to 1.492 Al91 but still 

significantly shortor than that for free dinitrogen dioxide (2.24 

A2’). This is consistent with substantial nitrogen-nitrogen sigma 
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bonding. The Fe-N distance found for the dinitrogen dioxide 

complex (2.23 A) is in accord with the Fo(I1) nitrogen bond 

distance of 2.26 A21 in [Fe(C4H8NH>61[Fo4(CO)13~. F inally. for 

the cis hyponitrite complex 3 our Fe-0 distance of 1.74 A 

compares favorably with 1.69 A (the sum of the ionic radii for 

OH- (1.18 A) and an estimate for the ionic radius for four coor- 

dinate Fe.(IV) (0.51 A)22 1. Our N-N distance of 1.21 A is the same 

as the N-N distance determined by X-ray crystallography for 

i(PhgP12 13b Pt(N202)1 , the only structurally charac.terized 

hyponitrite. 

Summarizing, we have demonstrated that (17) is a probable 

reaction sequence for group VI through group VIII transition 

motal deN0, catalysts. Specifically our energetics and correla- 

tion diagram suggest that dinitrogen dioxides are thermo- 

dynamically and kine.t.ioally aooossible cognates of dinitrosyl 

complexes. Wo believe that these results can be extended to 

heterogeneous Fe(I1) catalyzed doNO, processes as well. In fact 

WO speculate that the stretching frequencies observed by Ball 8C 

at 1917 cm -1 and 1815 cm” are due to bound dinitrogen dioxide 

which is blue shifted rolat.ivs to the free compound (which has 

frequencies23 at 1870 cm-’ and 1776 cm”. Because the 

coordination sphere of Fe(I1) ion exchanged into zeolites is 

thought24 to contain three oxygen ligands our. energctics suggest 

the frequencies assigned to a dinitrosyl are instead due to the 

kinetically accessible and thermodynamically favored dinitrogen 

dioxide moiety. Further, it should be noted that dinitrosyl 

stretching frequencies as high as 1900 cm-1 are rare. In 

conclusion :‘I 5 suggest that the kinetically (and thermodpnamical- 
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ly) most difficult stop in (17) is the isomerization of the 

dinitrogen dioxide complex 2 (or S) to the cis hyponitrite com- 

plox 3 (or 6). 

III. Nitrogon fixation. 

The fixation of dinitrogen is a reductive process of both bio- 

logical and large scale industrial interest. Thermodynamically 

the conversion of dinitrogen to ammonia is straightforward and 

tho conversion to hydrazino is feasible undor high pressures 

(AG29g for these processes aro -7.9 kcal/mol and +22.0 hcal/mol 

respectively: if the pressure is increased to 100 atm then the 

AG298 for hydrazine Formation is +16.7 kcal/mol). 

In the known nitrogen-fixing organisms the catalytic reduction 

of dinitrogen is carried out by aolybdoenzymes known as nitro- 

genases25. These nitrogen-fixing enzymes consist of two protein 

conpononts, a Fe-MO protoin and a Fe protein. Further, an iron- 

molybdenum cofactor has boon isolatod from the Fe-MO component 

protein of nitrogenaso. In faat oxtracts of the MO-Fo component 

from inactive mutant strains of microorganisms are activated by 

addition of this cofactor. Two modols of the active site have 

been proposed that are consistent with Mossbauer and EPl! spoctro- 

scopic data26 and EXAFS analysist7 of the Fe-MO cofactor. 

Unfortunately the models of such active sites synthesized to date 

do not reduce dinitrogen28-30. 

Industrially, dinitrogen reduction occurs over an Iron cat- 

alyst at high temperatures and pressures. The rate determining 

step is either the dissociative chomisorbtion of dinitrogen 31 

2’ + N2 - 2N-• (19) 
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or the simple chomisorbtion of an activated form of dinitrogon 

8 + N2 - N2-• (20) 

Both of theso procossos aro likoly followed by rapid reaction 

with hydrogen (oithor molecular hydrogen of chomisorbod atomic 

hydrogen). 

Thus, for both biological and industrial nitrification the 

activation of dinitrogen is a prerequisite for reaction with 

reductants such as hydrogen. Until very recently the observed 

forms of dinitrogen were bound to the metal with the nitrogcn- 

nitrogen multiple bond largely intact (non-activated). 

Md&sN Y=NmN.cM 

7 

(21) 

Thus those model compounds will only reduce dinitrogon undor 

32 rather harsh conditions . 

An understanding of a rocontly observed dinitrogen binding modo 

(analogous to organic atines) 

Md+Nd (22) 

* 8 

will provido additional insight into biological and industrial 

nitrif icat ion. The reactivity and structural characteristics of 

a new class of Tantalum complexes 33 suggest the bonding pattern 

8 in (22). Tho Ta-N bond distances of 1.796 A and 1.840 A are 

quit0 similar to thoso obsorvod in normal Tantalum iaido 

complexes33 (1.765 A to 1.77 A). In addit ion, reactions (23) and 

(24) are both obsorvodf3 (reactions characteristic of metal- 

ligand molt iple bonding). 
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M=N-R + R'2C=0 _\ r2c=w + 'M=O' (23) 

X=N-N=M + 2R2C=0 d R2C=N-N=C2R + 2’M=O’ (24) 

Finally, there is an obsorvablo *activation’ of the nitrogen- 

nitrogen bond (N-N bond distances of 1.282 A and 1.298 A compared 

to free dinitrogon which has a N-N bond distance of 1.0976 A). 

In this section we roport energetic support for the kine,tic 

and the rmodynan ic accessibility of 8 for molybdenum complexes. 

Our model consists of a bimetallic complex consisting of two 

Molybdenumtetrschloride units bridged by a dinitrogon molecule. 

For this complex we have characterized the *reaction path’ 

connecting the two likely resonance structures 7 and 8 

C14Mo-N=N-MoC14 c--3 C14Mo=N-N=MoC14 (25) 

9 10 

We find local minima characteristic of each resonance structure 

indicating the ‘resonance’ interaction between these two forms is 

not enough to result in a single averaged structure 34 . However. 

the resonance interaction is sufficient to provide a very low 

barrier interconnecting them (less than 1 kcal/mol). Thormodyn- 

amically we find 9 to be 20 kcallmol more stable than 10 for the 

tetrachloride ligand backbone. This thermodynamic difference 

could easily be overcome by an alteration of the ligand backbone 

and future studies will concentrate on this. Geometrically, for 

9 the MO-N distance is 2.28 A and the N-N distance is 1.10 A and 

for 10 the lo-N distance is 1.82 A and the N-N distance 1.23 A. 

This is in accord with a suggestion that the tetrachloride 

backbone does not fully activate the dinitrogen (a fully 

activated N-N distance should be on the order of 1.30 A). 
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Tablo I. Comparison of Soalar and Veotor M8triX Trrasforrations. 
(for various sized ratrioes, tiros ia aeu.) 

Matrix Soalar (with Opt.) Vector (times x 100) P8tiO YFLoP3 
size First Sooond Total Expand First Soooad Tot81 (S/V) (,Yoo.), 
NxNl Mult. Mult. Tiro Array Hult. Mult. Tino 

50 0.041 0.083 0.124 0.063 0.78 0.51 1.36 9.1 27.8 
100 0.32 0.65 0.96 0.23 3.65 2.59 6.48 14.8 46.5 
150 1.07 2.58 3.64 0.51 9.34 6.91 16.76 21.7 60.5 
200 2.52 6.74 9.2s 1.01 19.34 14.32 34.67 26.7 69.3 
250 5.39 14.35 19.74 1.83 33.43 25.64 60.90 32.4 77.1 
300 9.90 27.14 37.03 2.92 53.22 42.23 109.84 33.7 82.4 

Table II. Timing Breakdown for MC-SCF Enorgy Gonotation. 
(times in seconds) 

stop Molooulo/No. of basis functions 

H-0/7 FeC12 l (H20)2/43FoCl2(NO)2/65 FoC~~(NO)~(I!I~O)~/~~ 

Calculate 
One oloctron 

Integzals 

Calculate 
Two electron 

Intograls 

Sort Two 
Electron 
Integrals 

Generate 
Extondod Huckel 
Starting Guess 

Obtain 
Hartroo Fock 

Enorgy 
(10 it.) 

Obtain 
MC-SCF 
Energy 
(10 it.) 

Total Time 
% of Time 
HF 
MC-SCF 

0.13 36.4 48.5 81.0 

1.06 86.6 191.7 535.5 

0.0s 14.7 94.3 247.7 

-e-- 

0.11 1.8 3.1 -SW- 

s--s 
-e-e 
1.35 

8.1 
--w- 

0.8 1.1 s-s- 

-B-B 72.5 137.5 

-s--w ----- 
140.3 411.2 1001.7 

1.3 0.8 -em- 
---- 17.5 13.7 
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T8ble III. SCF Timing Bre8kdorn for 8n Individu81 Cycle. 
(Tires in seconds, rates in YFLOPS) 

Wavefunction Generate 
Description J. 8nd K. 

M:tricos’ 

Time R8to Time 

H20 MBS EF 0.0001 4.6 0.006 

F&l2 l (H20)2 

HF 0.0082 49.0 

FoC12(N012 
BF 0.0310 60.6 

GVB(12/24) 2.012 81.4 2.832 

Tr8nsform 
J. rnd K. 
Y:tricos' 

0.017 0.078 w--s --we 0.177 

0.034 

5.322 3.515 0.516 0.090 13.745 

OCBSE Orbit81 Optimizo Tot81 
Rotations aij and b. 

1J 

Time Time Tiro Timo 

0.004 e--w -s-s 0.011 

0.241 s-m- ---- 0.306 

1.990 0.328 0.091 7.253 
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The supersonic flow fleid over a body of revolution 
incident to the free stream is simulated numerically on 
a large, array processor (the CDC Cyber 205). The 
con&uration is composed of a cone-cyiiider forebody 
followed by a conical afterbody from which emauatu 
a centered, supersonic propulsive jet. The free-stream 
Mach number is 2, the je&exit Mach number is 2.5, and 
the jet-to&e&stream static pressure ratio is 3. Roth 
thuexterndfl~aadtheexhaastanidedairata 
common total temperature. The thin-layer approximb 
tion to the time-dependent, compressible, Reynolds- 
averaged Navier-Stokes equations are solved using an 
implicit tl.uite-dXerence algorithm. The data base, of 
5 million words, is structured in a ‘pencil” format so 
that efacient use of the array processor can be realized. 
The computer code is completely vector&d to take 
advantage of the data stmcture. Turbulence closure 
is acheived using an empirical algebraic eddyYviscosity 
model. The configuration and flow conditions cor- 
respond to published experimental tests and the com- 
puted solutions are consistent with the experimental 

hItZOdUti0n 

In 1980, a computational study was described in 
which the threodimensional flow tleld over axisym- 
metric boattailed bodies at moderate angles of attack 
was simulated.’ The exhaust plumes aere.modeled by 
solid plume simulators, and a second-order-accurate, 
implicit Unite-difference algorithm was used to solve 
the governing partial differential quations on the 
ILLIAC lV array processor. Several Row fleids were 
computed and the results compared with published ex- 
perimentd data The promising results of that first 
study provided the incentive to extend t& work to 
include propulsive exhaust jets emanating from the 
afterbody base. The lLLI.AC IV waz subsequently 
removed from service, however, and it became neces- 
sary to scale down the size and scope of the study to 
the capacity of existing computer resources. 

l Raumh Scientist, Manbar AILL 
tCompucw Aualyac. 

This paper ir decivtd a work of the U.S. Govermncnt and 
therefore is in the public domain. 

In Jauuary 1933, the results of a study of super- 
sonic sxisymmetric Row over boattails containing a 
centered propulsive jet were presented.z Those results, 
obtained using a Gray 1s computer with 10s words 
of main memory, were compared with existing ex- 
perimental data. Jet-t&re+stream static pressure 
ratio and nozzle exit angle were Wied parametriczilx 
and the predicted trends agreed well with experiment. 

The purpose of this paper is to describe the 
vectnrized implementation of the thne-dimensional 
Navier-Stokes code on a Cyber 205 computer for boat- 
tailed afterbodies at moderate angles of attack’that 
contain a centered propnlsive jet. Some computed 
rezults, which correspond in part to a published ex- 
perimental study for a like configuration and flow con- 
dftious, are included for illustration. 

Aftarbdy Codgudion 

The geometric couflgumtion is a 9 caliber body of 
mlution composed of a 14O half-angle conical nose, 
a cyiindricd forebody, and an 3’ half-Angie conical 
aft&&y of 1 caliber length. Centered inside the 
afterbody is a conical nozzle with exit diameter of 0.6 
caliber that is flush with the afterbody base. The 
nozzle exit half-angle is 20”. 

Experimental studies for the same cotiguration 
were performed by White aud Agre113 for the model 
immersed in an air stream Rowing at Ma = 2.0 and 
a jet-exit Mach number of 2.5. White and Agrell con- 
sidered angles of incidence to the free stream up to 8” 
and jet-to-free-stream static-pressure ratios up to 15. 
Because of limited acces to the Cyber 205 computer, 
computed results are included in this paper only for 
the case in which the angle of incidence is a0 and the 
jet-to-bstream pressure ratio is 3.0. 

Gmwniug Eqnationr 

The equations describing the flow are the 
Reynolds-averaged Navier-Stokes equations. These are 
written below in strong couserpative form in general- 
ized coordinates as 

BtQ + &(F. 6) + &,(F. 3”) + a,(F 7) = 0 (1) 
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and t,,?!,, and& are the Cartesian unit vectors and 
f, gq, i&p are the contravariant base vectora, which 
CtUlhWTitttS~ 

where I(, gv, audjlr are the covariant base vectors writ 
tenas 
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The flux vector F cau be decomposed into a 
parabolic part, FP; which contains only gradient 
d#usive terms, and a hyperbolic part, FH, which con- 
tains only convective-like terms, as 

Pi 
PfG + PC 

FH = 

I I 

pvi + pZy , F&-F--H (2) 
PG + PG 

(e + PIa 

For flows in which the shear layers are thin(whenRc > 
> 1) and aligned with one’ principal plane (say the 
plane normal to the u coordinate), the parabolic part 
of F can be neglected in the other two coordinates (( 
and c), without any real loss in accuracy. This is con- 
sistent with boundary-layer theory and yet maintains 
the coupling between the viscous and inviscid regions 
that is critical in simulating interactive flows. With 
this thin-layer approximation, Eq. (1) is rewritten as: 

A body~riented computational grid is constmcted 
hamanner compatible with the thin-layer approximrc- 
tion. Shown in Fig. 1 is the grid used in the 
prexnt computations. Figure la shows the complete 
co-on and Fig. lb the detail in the base region 
oi the afterbody. Fkadiai grid lines on the forebody join 
the surfgctorthogona#y. On the atterbody aud in the 
exhnur& plume,the rad3aI lines are normal to thebody 
rdr, Them are 81 points distributed along the body! 

---a. -a.- -1a 0 10 a0 30 

I) X 

II 

a60’ a94 a96 9.02 9.06 9.10 

bl X 

Fig. 1 Computational grid: bilateral plane of sym- 
metry. a) Complete contlguration (14-0 x 100 x 20); 
b) Base-region detail. 



with clustering near the nose and near the base. Of the 
81 points, 21 are used to defhm the afterbody shape; 
the afterbody is 1 caliber long. An additional 59 points 
are cbstributed downstream of the afterbody to a dib 
tance equal to 21 forebody diameters from the noxzle 
base. These 140 total points detie the 6 coordinate 
distribution. The radial distribution, corresponding to 
the rl coor&ate, extends from the body surface to a 
distance equal to 30 forebody diameters both ahead 
of the nose and normal to the body axis. A total of 
60 points is used in this region, with a high degree of 
streching used in order to resolve the subiayer of the 
turbulent boundary layer. (Here the first grid point off 
the body surface.corresponds approximately to a value 
of vf of 8 where qf = (P.d”YS - rl.)/P”.) Au 
additional 40 points are distributed across the nozzle 
and its blunt base, extending from the centeriine to 
the body surface. Of these, 20 are in the jet exit plane, 
and 20 are on the blunt base itself. 

One- and two-parameter hyperbolic-tangent strech- 
ing functions4 are used in the base region to focus 
resolution near the comers and to achieve a smooth, 
piecewise continuous distribution of points across the 
exhaast plume and base. At the nozzle exit, points are 
distributed along an arc describing the conical 
flow exit plane (that is, the arc radius is 
equal to the norAe exit radius of 0.3 caliber 
divided by the sine of the nozzle-exit half- 
augie of 200). Downstream of the nozzle, the 
grid lines are aligned so aa to ciq~ly ap 
proximate the eshaust piume shape for au cx- 
~nta~rsobserved axisymmetric flow by Agrell 

ahmh IS for the same geometric 
eonhgoratiok a.nd free-stream conditions, but for .L 
jet-to--stream pressnrb ratio of 9. The 
third dimension, c, is generated by rotating the 
two-dimensional (E, u) grid about the cylindrical 
tis while maintaining a uniform angular dis- 
tribution between the rotated planes. Here, 
20 radial pianes are used with planes 2 and 
19 coinciding with the bilateral plane of sym- 
metry, where plane 2 corresponds to the lee and 
piane 19 to the windward. Planes 1 and 20 
are image planes used to enforce a symmetry 
boundary condition. Thus, there are ([, 7) 
planes distributed every 10.588” around the half- 
body. 

The total grid dimensions are (149 x 100 x 20), cdr- 
responding to the [, 7, andc directions, Wpectively, 
for a total of 280,000 points. Of these, (80 x 40 x 20), 
or 64,000, lie inside the body and are not used in the 
computation, leaving an actual total of 216,000 points 
used in the computation. 

Data Struehn~ 

There m 23 variables required at each grid Point 
cormspon&ng to the 5 conserved quantities in the 8 

v&or, 5 residuals for the solution vector, 9 metric 
cafttcients, the Jacobian of the transformation, and 
3 componenfr of vorticity tlsed in the turbulence 
hasport model. This rem&s, for a compdationsl grid 
of 216.000 points, in a data base of 5 x lo6 words. 

To accommodate this large data base on a vector 
processor with a limited main memory, the computa- 
tional grid is divided into subsets called ‘blocks.” This 
data structure was originally devised for implemen- 
tation on the ILLIAC lV array processor by Lomax 
and Puliam and is described in detail in Ref. 6. In 
the present case, each block is a 20 x 20 x 20 cube 
for a Mai of 8,000 points and a data base subset of 
184,000 words for the 23 variables. The blocks are 
stacked together in each coordinate direction to form 
a sequence of bloeb called ‘pencils.” 

For 8‘ gixen coordinate direction, one complete 
pencil of data is loaded intO the central memory, and 
computations are performed on that data correspond- 
ing to the coordinate direction.. At auy point in the 
computation, only 17 variables are required to be in the 
main memory at one time (6 of the 9 metric coefacients 
are not used in any given direction). This results in 
a *bare subset of 136,ooO words. For a proces- 
sor with 10’ words of main memory then, as marry 
ma seven blocks of data can be held in storage for im- 
mediate processing. The block dimension is an ad- 
justable parameter and is limited only by the maxi- 
mum pencil leugth and the main memory of the vector 
pnxessor. 

Shown in Fig. 2, in physical coordinates, are the 
block boundaries for the present co&guration. Figure 
2s shows the complete conflgnration and Fig. 2b the 
detail in the afterbody region. Figure 3 shows the 
corresponding block structure in computational space. 
The mesh nodes of the computational domain are ar- 
ranged in a rectangular latice with positive integer 
coordinates (c, 7, c). Each node belongs to three pen- 
cils, a E-pencil, an q-pencil, and a c-pencil. The pencils 
of each sweep direction are given a detlnite order. For 
the <-pencils, the u-coordinate varies most rapidly as 
the pencil index increases; for both the q-pencils and 
c-pencils the coordinate [ varies most rapidly. Figure 
4 illustrates this sequencing for the present data struc- 
ture. 

Within a pencil, the planes are naturally ordered 
by the sweep coordinate. The pencils of data can be 
stored in the correct pencil ordering for just one sweep 
direction only. When sweeping in the other clirec- 
tions, pencils of data are gathered and fetched for com- 
putation and scattered back when writing the updated 
values. Additionally, the ordering of nodes within a 
plane can be correct for just one sweep direction, and 
it is necessary to transpose the the data in memory 
so that each piane of nodes normal to the sweep direc- 
tion forms a contiguous set of memory locations. In 
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the pment code, the ordering of nodes ‘u m~& for 
the -ion asid transpose routines are.used for the 
other sweep dire&ions. 

BASE.REUlON DEWL 

Fig 2 Block boundaries: pi@cai space. a) Compieh 
l2tdgmaq b) B8swegiondetaiL 

rl 

Fig. 3. Block boundaries: computational space, corn- 
plete configuration. 
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Fig. 4 Data structure within pencil data base. 

NuInericaiAlgorith.m 

The numerical algorithm used to solve Fq. (3) 
is the ap rorixnatt factored scheme of Bea- and 
Wm. P Rewriting Eq. (3) as 

w = --B~(FH.b)-aa,(F.a)-ac(FH.~) = R (4) 

the corresponding difference equation is then 

W,LF A4 = RE + R, + Rf 

where the operators are defined by 

(5) 

LQ = (I + At&X’ - 61 J”V(A<J) 
f~=((1+At6~CCn--~J-LV~A,J-At69J-L.M”J) 
fc=(I+At6,B=- E~J-‘V,A$) 

& = -At6&FH. jl’)” - (~,q T* (V~A#J Q” 
R v = -At&(JF . ye)” - EE r’ (V,A,)2J-Q” 
2, = -At6,(JFH. f)” - EE J-’ (V,A,)2J Q” 

where the Se, 6,, and 6, are central-difference 
operators; Vf, V,, and Vr are backward-digerence 
operators; and A+ A,, and ALr are forward-digerence 
opera&on in the if--, q-, and @irections, respectiveiy. 
The At term is a forward-difference operator in time. 
For example, 
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&Q m Q”+l - Q” 

AeQ - Q(E + A6 rl, I) - UC, 1, f) 
and 

v&l - Q(t, rl, f) - NC- A& I), f) 
The Jacobian matrica 

A = WQr~ b, 

amdescribed in detail by Pulliam and S-r.* Fourth 
order explicit terms (preceded by the catkient CE) 
and second-order implicit terms (preceded by the 
c&Went 61) have been added to control nonlinear in- 
stsbiiities. 

Eqnatioa (5) is solved in three successive sweeps 
of the data base, each sweep inverting one of the 
operaton on the left-hand side: 

The solution is advanced in time by adding. A& to Q 
after the t sweep. 

In the general cabt, pencils of data are loaded ink 
central memory four timeLand operated on for each 
time-step advance: once each for the .f and q direc- 
tions and twice for the c direction. First the right- 
hand side of Eq. (5) is formed and then the left- 
hand-side operators are inverted one by one. A flow 
schematic showing the ordering of operations, inciud- 
ing data reads, transposes, computations, and data 
writes is shown below where the symbols R and w 
represent variables used to accumulate the right-hand- 
side elements and vorticity elements, respectively, for 
each coordinate direction. 

<-pencils: (initial step only) 

Read: Q, J, .+-metrics 
Compute: R--c, U-W(() 
write: R, w 

Red Q, J, R, w, g-metrics 
Tbmqom: Q, J, R, w 
Cornpate: R = Rt + R,, 

w = 40 + W(f) 
Thnnpom: R, w 
Wite: R, w 

q-pencils: 

Red Q, J, R, w, g-metrics 
lh~pow: Q, I, R, w 
C-wnt= w - w(Q + 4s) + w(rl) 

PIi4 

Read: Q, J, L;‘(R), c-metrics 

-pow: 4, J, L;‘(R) 
Compute: L;’ L i’(R) 
Tranapom L;‘L;‘(R) 
write f;’ f’:(R) 

Resd: Q, I, L;‘L;‘(R), f-metrics 
Compute: AtQ, 8, R = EC, w = 40 
write: 8, R J 

End Loop 

In this flow sequence, 62 variables are read, 57 
variables are transposed, and 31 variables are written. 
Fbr the special case in the present study in which the f- 
pencils are just one block long, a more efficient operz+ 
tion seqnence can be used that substantiatly reduces 
the number of reads and writes required. This is shown 
b&w. 

~-pencils: (initial step only) 

Read: Q, J, t-metrics 
Compute: R = RC, w = w(t) 
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Begin Loop 

ppencik 

Read: ~-me!trics 

Ransposc: 8, J, R, w 
Compuk R = & + R, 

w = w(E) + 4s) 
Thnsposc: R, w 
write: R,w 

q-pXlCilX 

f--pcacils: 

Read: f-metrics 
Transposer Q, J, L’,‘(R) 
Cornpate: r;‘&‘(R) - 

lhnapow f;‘&‘(R) 
wit.c r;’ f;‘(R) 

&pencils: 

Read: Q, J, r;‘f;‘(R), [-metrics 
Compute: A&, Q 

R = Ret w = w(t) 
Write: 89 

End Loop 

In this flow sequence, 32 variables are read, 52 are 
transposed, and 18 variables are w&ten, a savings of 
nearly 50% in the I/O. In both the general case and the 
special case, the data read-transpose sequence and the 
transpose-write sequence can be replaced by/cbe more 
etlkient “gather” and *scatter” commands ,available 
for the Cyber 205 (Ref. 9). Further improvements in 
eficiency can be obtained by using asynchronous I/O 
in conjunction with a rotating memory backing store. 
The most efkient code, however, will be realized by 
using a solid-state backing store in conjunction with 
gather and scatter commands or with a code that is 
fully core contained. 

The numerical algorithm conforms well to large 
vectorization. For block sizes of 20 x 20 x 20, the vector 

length is 400. Timing studies with the present code in- 
dicate ;uL MFLOP rate (million of floating- point opera- 
Tom per second) of-115 +hm computing in half pn~i- 
sion (32-W word lengths) on a 2-pipe cont&uation. 
On a 4pipe con&u&ion the MFLOP rate increased 
to 207. There are approximately 3,800 f$ating point 
operations executed for every grid node per time step 
resulting in a CPU time of 33 x l(T* set per point per 
time-step on a l-pipe machine and 18 x lose set per 
point per time-step on a 4pipe machine. The transpose 
times (transposes do not contain any floating-point 
operations) are 5.6 x 10-c set per point. Equivalent 
transposes performed by gather and scatter instruc- 
tions require just 1.8 x lVa set per point. When 
synchronized I/O to and from rotating backing store 
WM used, the average I/O time was 25 msec pervari- 
able per block T’hia translates directly into 172x 10? 
= per point, but averlapping the I/O reduces this to 
94 x l@ see per point. (The Cyber 205 us& rot these 
timing studies was conflgumd with four I/O channela 
tu xcommodab overlapping.) This time, a muk in 
Iarge part of the, latency time in accessing disk Rles, 
can be reduced to. nearly zero by using I/O butTers in 
conjunction with asynchronous I/O or with solid-state 
backing storage. The use of I/O b&en, however, im- 
plies the mailability of additional main memory and 
imposes au Aiitional constraint on the pencil size. To 
amid this comtraint, the data flow should be modified 
such that a subset of contiguous blocks of data in a 
pencil are operated on while blocks at each end of the 
subset are being btiered in and out. 

Boundary Conditionr 

Boundary conditions are imposed at the ends of 
each data pencil; the data pencils are identifled by 
number in Fig. 3. For the .+direction, pencil No. 1 
starts at the jet-exit plane- Supersonic conical flow 
conditions corresponding to a jet-exit &Mach number of 
2.5 and a static pressure of 3p, are imposed at the 
first data plane. At the last plane of each of the Eve 
[-pencils, which correspond to the outflow boundary, 
fIrsorder extrapolation is used so that a& = 0. 
Pencil No. 2 in the .$iirection begins at the blunt base. 
Here slip conditions and an impermeable adiabatic wall 
are imposed so that 

B&9) = &t&u) = B&WI) = 0 

pu = 0 

Be[e - 0.5(pu2 + ptJ2 + pw2)] = 0 

Pencils 3, 4, and 5 in the {direction begin on the 
grid centerline of revolution (at f = 0) ahead of the 
forebody nose. Here a second order extrapolation to 
the centerline is used such that 

B&l) = 6&m) = B.&w) = a,(p) = 0 
while the lateral momentum is set to zero 
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PO-0 
Inaddition,ateachrl,theQPana~a~ara 
f on the centerline and used as bounw values for ail 
f at each 7. Speciai treatment of th4 bw CO~IIM at 
the afterbody-blunt-base junction is asid to vcount 
for the singnhu nature of that Llnc For the .+w~II, 
tk p-line of data in pencil No. 3 that corru.ti to 
this corner is treated in the same manner as the llrst 
plane of data in pencil No. 2 that corresponds ta thh 
Mnntbare. ThislIneofdataistreateddIR”iyin 
the q-sweep and is described in the second paragraph 
~OllOWiDg. 

After the forebody &JW Ild ir fully Moped 
during tk conrse of the solution, the first two q-pencils 
can k dropped from the computation and boundary 
conditions imposed on the @mcils tkt comnd 
to the fully developed flow at the plane that is tk 
updream boundary of rppencil No- 3- This reducea 
thu totd data baee by six bloeb without attsrfnFtk 
vdidity of tk solution, This simpIi.katioo is strictly 
valid only for supersonic external Bows, The solution 
downstream can be further developed to steady state, 
and jet parameters can even be varied to generate & 
ditiond solutiona 

Boundary conditions for the r@irection consist of 
the imposition of free stream conditions at the last 
plane of each of the seven ppencils; n+slip, adiabatic 
wall condition for the fhst plane of q-penciI& 1 through 
4, which correspond to the kdy snrfat; and &s&order 
extrapolation to the centerfine for pencils 5, 6, and T 
such that S,Q = 0, Ceuterlinet avera@g, aa described 
for the &encii lmndy-ahead of the body, is also 
ased for the q-pencil boundary in the jet. The line of 
data in q-pencil No. 5, which corresponds to the corner 
between the afterbody and the blunt base, is treated 
in tk same manner as the list plane of ~-pencils 1 
through 4. As a result, this line of data is double 
vdued: one value for the 6 sweep described previously 
and the nc+slip, adiabatic value for the q-sweep. 

For the <direction, bilateral symmetry is imposed 
by setting the data at the 6rst and last g-planes equal 
to the values in the third plane and in the second from 
last plane, respectively, with a sign change included in 
the lateral momentum component (pv). 

Turbulence Clomre 

The Reynolds stresses and turbnlent hea+flux 
terms have been included in the stress tensor and 
heat&u vector by using the eddy-viscosity and eddy- 
conductivity concept, whereby the coeficients of vis- 
cosity and thermal conductivity are the sum of the 
molecular (laminar) part and an eddy (turbulent) part. 
Eddy-viscosity models incorporate turbulent transport 
into the molecular-transport stress tensor by adding 
the scalar eddy-viscosity transport catflcient /.Q CO 

tk eoemcient of molecnlar viscosity, ( P. = p + 
/IT), tkxeby relating turbnlent transport directly to 
gradienta of the mean-&w mriables. In a Cartesian 
coordinate eystem, the thnadimensional molectdar 
stress t4m3or can be written as 

In tk thin-shear-layer approximation, the only com- 
ponents of the stress tensor that are retained are those 
having gradients with respect to 7 only. 

Turbolent heat tramport is deaned in terms 
of mcuttnergy gradients and an eddy-conductivity 
cdkient K. such that K, 3: K + KT. ~ically, 
tk ~ondnctivfty coeacient is related to tk eddy; 
viacoai~ emilleient via a turbulent Pmndtl nnmber 
PrT where 

Prr - C;BTIKT 
The turbulent Prandtl nnmkr is assumed constant at 
a vdue of 0.9. 

The elpbraic eddy-viscosity model nsed here b 
that pmpoeed by Badwin and Lomax.l” This model 
in particnlariy well suited to complex flows that con- 
tain regions in which the length scales are not cbariy 
dellned. It is described briefly as follows: For wall- 
bounded shear layers, a twdayer formulation is used 
suchthat 

87 - h)mk for fl > Tar**oavar 

where 7 is the normd distance from tk wall and 
rl#W.- is the smdlest value of q at which values 
fkom the inner and outer formulas are cqud. The 
PrandtCVan Driest formulation is used in the inner (or 
wall) region. 

(PThrnw = L@fwl 

I! - 0.4q [1 - =d--rllA)l 

A = W”/diK 
The formulation for the outer region is given by 

(/‘T)adar = 0.0166 Cc, F-.ra Fmah) 

F * 
4 

flmas m-s 
rakm = C-i qmu ~i~/F,, > 

The quantities qmW and Fmor are determined from 
the function 

where Fmor is the maximum value of F(q), and qrnar is 
the wlue of q at which it occurs. The function FKI#~(~) 
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is tk KIebanoff’intermittency function &en by 

Tk mi@ & IS the di&~nte bshem the msxi- 
mumandminimamtota 
(along an q-coo- line, Y 

v&city in the proffle 

&f3L-dir 

and for boundary layers, tk minimum is deaned M 
zero. The other constauts am given by 

c a, = 1.6 ) C.L - 0.25 ) CKh) = 0.3 

The adm&age of this model for bouu*lqFr 
Ilows sm as foiluus: 1) for the Inner .-on, therdoeity 
audlcngthscduareaIwaysweII~andtk 
modd is eon&tent with the ‘law of the rdl”; 2) In tk 
outerregioll forweu-behaved (simple) boundMy a 
rkre there is a weII-detied length xdt (q-J, the 
velocity scale is determined by F-, which is a length 
scale times a mrticity scale; 3) ie the outer region of 
complex boundary layers where tk length from a waU 
becomes meaningless, a new length scde is deternun 
from a velw (qdi/) dbidai by s velocity Gs. 
( /WI ), and tk velocity sede is q&f. 

The outer formulation, which is independent of q, 
is also used in the free-shear flow regions of separated 
Row aud in regions of strong viscons/inviscid intelc 
action- In thesa regions tk van Driest damping 
t-m bti-d4f, is negIecte& For jets and wakes, 
tk Klebanoff intermittency factor is determined by 
measving from the grid centuIi.ne, and the minimum 
term in qdi/ is ednated ftotiw tk profIle insksd of 
bdi deaned as zero. 

The didlty o? the eddy-viscosity model constants 
for high-pressure, compressible exhaust jets has not 
been established, and conrpressibiiity e&cts are not 
accounted for. 

At the exhaust-jet exit plane and in the near-base 
region, the eddy viscosity is assumed to be negfigibly 
smalt and to increase spatially to the value given by 
the outer model over a short distance downstream of 
the base. 

computed RemIts 

As mentioned in a preceding section (tierbody 
Contlguration), a flow field has been computed for 
the body placed at an angle of incidence of 60 to 
a free stream at Mach 2. The jetexit Mach num- 
ber is 2.5 with a static pressure 3 times that of the 
free! stream. Beginning with an impulsive start in 3 
uniformly flowing stream at Mach 2, the solution was 
hanced timewise to a dimensionless time (t d/U,} of 
5.1, where d is the forebody diameter and Ua is the 
undisturbed free-stream speed. Although a solution 

at a tima of 5.1 is probably not sul3ciently converged 
to permit valid qnantitative comparisons with e& 
mant, it is sul!lcient to establish the basic Ilorr-field 
ehac~Q~ and TV Wstrate tk features of tk solution 
and the computer code. 

The InItiaI thn~step size of At =O.OOOl”wti in- 
creased to At =O.OOl as the solution passed thri& its 
initial rapid transient. A variable time-step was used 
in the snbsonie flow regime downstream of the base in 
order to lainimizc the growth of nonlinear instabilities 
aggravated by changes in sign of the eigen-vaIues in 
this region. The time-steps in this subsonic region were 
scaled down by a factor equaI to the local streamwise 
Mach number with a cutotT minimum factor of 0.001: 
Imposed to prevent the time-step from going to zecm. 

Omuring phyaicaUy in this region is a rapId ix- 
pansion of tk jet around thu n&e lip folIowed iin- 
mediately by a strong neompressIon in th& toti of E 
bar& shoclr; in addition there Is a slip surf’ dew 
tk bouidary between the exhaust plume and the ex- 
tunaI fIow. Each of these three high-gradient features 
Is focused at the n&e lip and demands ahigh degree 
of nsolution that haa not been provided for in the com- 
pantiondgridusedhere. 

Shown In Fig 5 are computed density contours 
in the biiateal plane of symmetry in the vicinity of 
the body. The lower s&ace is the wind side. Clearly 
&fined downstream of the afterbody is tk slip sur- 
thee demarcatiug the boundary ktween the exhaust 
plume and the exterud flow. The propulsive jet ex- 
pands rapidly around the no&e lip and can induce- ‘low 
separation 00 thu aft&~@ surface. For low-pnssprt 
jets, or no jet at all, there will be a region of recir- 
culating flow on the blnnt base. The afterbody drag is 
strongly Muenced by the detail of the separated flow. 

Fig. 5 Computed density contours, plane of symmetry: 
L&, = 2, i!!fJ = 2.5, PJ/&, = 3, 

a = tP, Re,, = 1.5~10~. 
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Thedetailofthesep8mtioupstttrnisshMLiB 
Fig. 6 in which computed surface stnamlines have 
been mapped on the afterbody and projected on the 
bU&erai p-f-qmmetq view of the denrifi COP 
tour plot OICT the aft portion of the w onl~s There 
h a se-ion Mde on thu lee generator of the coni- 
cad afterbody at t = 8.92. All surface streamlines on 
the lee side of the body flow into this node. A line of 
sep8ration crtends from this Mda, dowuwwl on the 
afterbody surface, to a sepantion saddle at-t - 8.98, 
W from the wind generator. The lkm direction aIong 
this line of xpwation is upw8rd fkom the uddle to the 
nod+ There is alao flow optward tinr the separation 
saddle downward to the end of the but, around to the 
wind generator, 

Shown in Fig. T is a psrspcctive view of the 
SW&G stmmliics on the afterbody and the blunt 
base. The outer edge of the base is a dividing surface 

so ; LEE Sl6E 
,d 

-_-_-am. ..-m c 
-..-~ 

o.oo&2s6sobt5Q00-~ 0 
X Y 

Fig. 7 Psnpectire vi& of surface streamiines over 
conical afterbody and annular base. 

streambe extending from a saddle point on the lea 
generator to a node point approximately 33. from the 
wind gene&m. A dieding streadne.can be seen cir- 
cnmscribing the annular base connecting a saddle point 
on thewindward and a nodal point on the Iet- This 
line sepvates the external flow frcm the flow from the 
jet. Flow is upward from the windward saddle to the 
lee&& node. 

Shown in Fig. 8 is a sktch of an end-view projec- 
tion of the Ml view of the afterhody (not to scaie) 
shming ail the dividing streadbes and their COP 
responding singuhr points and flow directions. 

Fig. 8 End-vim schematic of dividing surface and 
singuhr points streamlines. 
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The trajectories ait the hid puticiea in the phm 
0fs~etryinthebssaregionaresharrninFlg. 9. On 
thelec,seeninF~.94ths~~mtbejctcrprsds 
around the no&e Ep and mores outward M the 
edge of the base. Upon meeting the m flow, it 
turns d-m and de&es the exhaust plume boap 
dary. Aregionof rmfs4 flWCaIlb8CitiU~sCendHJWS 
the afterbody lee generator The path of the fluid in 
the external Ilow is over this separation region and 
around the afterbody base to the slip surface dcaniag 
the boundary between the exhanst plume and stand 
flow. The! point defined by the outer edge of the bsst 
and the afterbody lee generator is a singular point that 
from the fluid streamiineq appears as a saddle point in 
both the circumferential plane and in the r;diai plane, 
and as a nodal point in the streamwise biluerd plaue 
of symmary (the plane of the beae). 

On thu winMad, shown in Fig. 9b, the a 
lines just off the wind vr of the afterbody 
tarn the corn- an&mm toward t& slip sarfam 
b&men! the jet and the eternal &JW. All eternal 
flow streamllnu (exciudlng the surface s~auGne) ap 
prosch the slip surface downstream of a uddle point 
in the bilateral plane of symmeU’y locati at I = 
9.016 on the piume-exfzrnai ffw boundary. Thb ~QP 
face strumIi.ne tyrns the corner and appmuhes the 
windward iaddle point on the base it&elf. Fluid from 
the jet expands around the nozzle lip and m~vcs out- 
ward. The fluid just off the lip nwvu to the saddle 
point on the baue and thu fluid farther inside ihe lip 
expands toward the plume boundary domstream Of 
the saddle point on the slip surface- 

surfue-prusure distributions over the dterbody 
snrke ad over the base are shawn in Figs. 10a 
an&lob, respe&iwAy. An expansion at the forek~~& 
afterbody junction over the afterbody surface can ,be 
m This expansion is greatest on the windyard, 
where the pressure le4 is highest, and decreases 
toward the lee The circumferentid wriation of pres- 
sum near the lee side is quite smail for the entire length 
of the aft&&y. Toward the end.of the afterbody 
there is a slight recompnssion on the lee side which 
is not ohmed on the windward. Just a& the end of 
the afterbody there is an expansion as the flow tarns 
around the aftcrbody toward the base. 

Flgum lob shows a projected view of the base 
aad j&exit prasure distribution. The left side of the 
‘top hat” prusure distribution corresponds to the lee, 
andthefusidecorrupondstothetidward. The 
large uniform premure &tribdion. of the ‘top hat” 
codgurdon corrupondr to the high-pressure jet, and 
tb uxlddng %im” of the hsc is the distribution on 
the anmdar baw. On the windmud there is a rapid 
expmsbn a& thm Male lip followed by a fairly large 
recompression tward the outer edge of the base. The 
M trend is obnerved at other radid positions around 
t&r barn but to a lassa degree. The circnmferentid 
W&ion of but pressure is consistent with the ex- 
puimentaily obsemd variation of White and Agreil 
for tbm same jet-timstream pressure ratio. It is 
hhmdng to note, h-m, that in most experimen- 
trl&adhthemdidmri&ionofpfemre is ai3sllmed 
Ggiigibie axi k not musured. The distribution in Fig. 
lob clearly idicatu a subatautid variation across the 
-barn 

‘241 I 

Fig. 9 Bare-region path lines: plane of symmetry. a) Lee; b) Windward 
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ABSTRACT 

Viscous flow past a circular cylinder becomes unstable around 
Reynolds number Re = 40. With a numerical technique based on Newton's 
method and made possible by the use of a supercomputer, steady (but 
unstable) solutions have been calculated up to Re = 400. It is found 
that the wake continues to grow in length approximately linearly with 
Re. However, in conflict with available asymptotic predictions, the 
width starts to increase very rapidly around Re = 300. All numerical 
calculations have been performed on the CDC Cyber 205 at the CDC 
Service Center in Arden Hills, Minnesota. 

INTRODUCTION 

The structure of viscous steady flow past a circular cylinder at 
high Reynolds numbers forms one of the classical problems in fluid 
mechanics. In spite of much attention, several fundamental questions 
remain open. Apart from a previous calculation by the present author 
[d, complete, steady flow fields have been obtained numerically only 
UP to around Re = 100. This is also close to the upper limit for 
experiments (due to temporal instabilities). Both the early numerics 
and the experiments point to a recirculation region growing linearly 
in length with Re. Figure 1 shows the length of the wake bubble 
against Reynolds number according to some different calculations. 
Persistence of this growth for Re -> 00 has been assumed in most 
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recent asymptotic studies of steady high Reynolds number flows past a 
body (e.g. F.T. Smith [lS]>. A possible Euler flow, consistent with 
this idea, was analyzed by Brodetsky [3] in 1923. It is known as the 
Helmholtz- Kirchhoff free streamline model. This suggested limit is 
characterized by two vortex sheets leaving the body tangentially 
approximately 55O from the upwind center line and extending to 
downstream infinity, enclosing a region of stagnant flow. Although 
this undoubtedly is a solution for Re = 00, G.K. Batchelor [2] gave 
in 1956 several arguments against this being a possible limit for 
Re -> M. He proposed an alternative in which a finite wake with 
piecewise constant vorticity was bounded by vortex sheets. Some 
suggestions about how such a flow might be reached as a limit for 
increasing Reynolds number have been given by Peregrine [lo]. 
However, only very few Euler solutions of this so called 
Prandtl-Batchelor type have been calculated (e.g.[12] contains one 
example and some further references). None of these are for flow past 
a cylinder. Figure 2 gives an 'artists impression' of what the two 
models for infinite Re might look like. The calculation [6] hinted 
at a process leading to a shortening of the wake. The present work 
suggests (in agreement with F.T. Smith [14]) this shortening at 
Re = 300 was erroneous and caused by insufficient numerical 
resolution. However, our best current evidence is that the 
qualitative result was correct. We beleive that a reversal of trends 
towards a shorter wake can be expected around Re = 500. This 
contrasts with the conclusions in [14]. Our main evidence is that 
the wake increases in width far more rapidly after Re = 300 than the 
asymtotic analysis allows for. Independently of the position of 
artificial boundaries and of numerical resolution, we find that the 
flow is of different character past Re = 300. Significant amounts of 
vorticity are then re-circulated back into the wake bubble from its 
end. We hope to soon carry this study past Re = 400. 

All the numerical calculations in this present work were 
performed on the Control Data Corporation Cyber 205 computer located 
at the CDC Service Center in Arden Hills, Minnesota. We wish to 
express our gratitude to Control Data Corporation for making this 
system available for this work. 
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MATHEMATICAL FORMULATION. 

With a cylinder of radius 1 and a Reynolds number based on the 
diameter, the governing time independent Navier-Stokes equations, 
expressed in streamfunction y and vorticity ~0 , take the form: 

(1) bY+h= 0 

aw d’s (2) 4w + Y-e- ‘y . --- - --- . a-?? ) = 0 
2 X ay bY bX 

Accurate numerical approximation and economical computational 
solution of these equations in the given geometry poses a series of 
difficulties which previous investigators have dealt with in a 
variety of ways. The most serious of the difficulties seem to be: 

1 . Boundary comditions for q at large distances. 

2. Boundary condition for # at the body surface. 

3. Avoiding the loss of accuracy that comes with upwind 
differencing. 

4. Economical choice of computational grid. 

5. Reliable and fast rate of convergence of numerical 
iterations. 

The point 5 above has been the limiting factor in virtually all 
previous attempts to reach high Reynolds numbers. No reliable 
technique has emerged to prevent slowly converging iteration schemes 
from picking up physical instabilities in the artificial time of the 
iterations. 
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thin 
much 

(3) 

(4) 

The 

NUMERICAL METHOD 

All vorticity is concentrated on the body surface and in a quite 
wake downstream of the body. Outside this region we can use the 
simpler equations: 

A-Y = 0 

w = 0 

top part of Figure 3 shows the upper half plane minus a unit I circle and, dotted, a region which contains all the vorticity (apart 
from the far wake). of the figure shows how the 
mapping z = t/?+ l//T? m~~~to~he~~r~o the first quadrant and a 
rectangle respectively. Figure 4 shows what a rectangular grid in 
the z-plane (with non-uniform stretching in the vertical direction) 
can look like in the x-plane. The Navier-Stokes equations, 
transformed to the z-plane take a form almost identical to (1) and 
(2): 

(5) ATf + W/J = 0 

Re 
(6) Am+ e-w a-Y ;z . ?tt _ ___ . 2) = 0 

2 89 AY) 

where J = \%12 is the Jacobian of the mapping. These equations 
were modified further by subtracting out 
function for the difference is v = $ 

otential flow. The stream 
-253 l On a grid in the 

(stretched) z-plane, equations (5) and (6) were approximated at all 
interior points with centered second order finite differences. To 
close the system, boundary conditions have to be implemented for 
Y and m at all boundaries. 

The extreme sensitivity of the final solution to small errors in 
these conditions has only recently been fully recognized [6]. For 
example already at Re = 2 it was found that use of the free stram 
value for Y along circular outer boundaries at distances 23.1 and 
91.5 caused 18 $ and 4.4 $ errors in the level of vorticity on the 
body surface. 
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The 'Oseen' approximation is'the leading term in an asymptotic 
expansion for the flow far out in a wake (e.g. Imai [8]). In po1a.r 
coordinates, it takes the form 

(7) 

(8) 
CDRe Q -Qc 

m= - --------- e 
4fir 

Q 
where Q = ($Re r-Y'2 sink@ , erf Q = 2'1c -% 

a e-'=ds and C, the drag 
coefficient. C P can be evaluated as a line integral around the body. 

The performance of this Oseen condition as an outer boundary 
condition is disappointing. The percentage errors mentioned above 
improve, but only to to 3.4 % and 1.2 $ respectively. For increasing 
Re, direct use of (7) becomes meaningless. Figure 5 illustrates this 
by comparing the true V (here the difference between streamfunction 
and free stream, not potential flow) with the values from (7) at 
Re = 200. The two fields bear no resemblance to each other at the 
distances from the body we are interested in. 

Comparison with numerics suggest that (8) is far more accurate 
than (7). Furthermore 

1 . Any errors in (8) are present only in a very narrow region 
along the outflow axis, 
as with (7). 

not along the whole upper boundary 

2. The governing equation for d is of a type which cannot 
transport incorrect information for t3 back up towards the 
cylinder. 

With this background, let us briefly outline how the boundary 
conditions of high accuracy can be implemented on the edges of the 
present computational region. Figure 6 shows this region in the 
z-plane with a typical vorticity field together with its reflections 
in the coordinate axis. 
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BOUNDARY CONDITIONS FOR 

Left boundary: 5= 0 

Bottom boundary: q= 0 

Right boundary: S=s, 

Top boundary:Y)= 9,,,0 ,<%is,,* 

v= 0. 
w= 0. 
a’u 
w = W (noting that ?.-.- << 

Jr2 
<< aB 

a+ 
along this boundary). 

A correction to the integral above for vorticity reaching 
outside the downstream boundary can easily be incorporated. For a 
fixed grid, the dependence of Cy at each boundary point on ~3 at 
each internal point is independent of Re and can be calculated as a 
large matrix once and for all. A boundary condition of this kind was 
used in all the calculations presented below. However, we currently 
use a different condition. A wide two level difference formula can be 
found which is consistent only with the decaying modes of the 
equation DY = 0 (as opposed to the usual 5-point 3-level formula 
used inside the region to approximate both growing and decaying 
modes). 

BOUNDARY CONDITIONS FOR 03. 

Left boundary: 5= 0 ,0 In,. a= 0. 

Bottom boundary: q= 0 ,O 5 s< 2 . A relation based on AW+w% 0 

2 isLf,* 
and Q' an even function of tj . 
a= 0. 

Right boundary: 5=5,,0 $f)<q,. %,=wr,( q&i,, I2 

Top boundary: 9=3,,0 I5 i!&,,. LJ = 0. 

The condition at the right boundary comes from the observation 
that the leading term of (8), transformed to 5 ?I -coordinates 
simplifies to 

(9) 

where c, and cz are constants. The mapping has achieved a 
separation of variables. 
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The discrete approximations at the interior points together with 
the boundary conditions form, after minor simplifications (explicitly 
eliminating all boundary unknowns w 
boundary), a non-linear algebraic sy%?of ?izF)(2N-3Tt 

the top 
equations 

with equally many unknowns. In most earlier works, great care has 
been taken to ensure that, at this stage, this (or some equivalent) 
non-linear system has a diagonally dominant form for low Re. This 
would allow direct functional iteration to convergence. Techniques 
like upwind differencing [1],[4],[11] help in this respect at the 
cost of lowered accuracy. Newton's method, described below, offers an 
outstanding alternative. 

NEWTON'S METHOD. 

Newton's method is a very well known procedure for finding zeros 
of scalar functions. If a function f(x) is given, we can find an x 
such that f(x)=0 by the procedure: 

(10) X0 'close' guess of root 

f(xJ 
(11) X = ---me- 

n+\ xH - 
f'(x,) 

The iteration step can be written 

(12) f’(x,) Ax, = -f(xJ 

n = 0, 1, 2, . . . 

Known, f' evalu- Unknown, the Known, residual. 
ated at the latest correction we Should be zero 
available approxi- should apply if x m had been 
mation x,. to x h , i.e. exact. 

X = x,,+ Ax,,. m*t 

Written in this form, the generalization to systems is 
straightforward. For example the system with three equations in 
three unknowns: 
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(13) 
fb, y, z> = 0 
dx, y, z> = 0 
h(x, y, z> = 0 

can be iterated 

Known, "Jacobian" Unknown, Known, 

I- 7 
I 
I f(x ,y ,z ,i 
I I 
I I 

= - I g(x ,y ,z >I 
I I 
I I 

i- h(x ,y ,z >J 

of system. corrections. residual. 

Each iteration involves the solution of a linear system. Like in the 
scalar case, convergence is quadratic and guaranteed to occur for 
approximations sufficiently close to any 'simple' solution. The 
realization that this procedure is practical for extremely large 
systems (several thousands of equations) is rather recent and linked 
to the emergence of powerful computers. 

For our present problem, use of Newton's method offers several 
major advantages: 

1 . 

2. 

3. 

The quadratic convergence allows no possibility of 'inheriting' 
temporal instabilities to the artificial time of the iterations. 
Convergence is guaranteed if an isolated solution exists in the 
neighborhood of a guess. 

If turning points or bifurcation points are found, they will 
cause no difficulties. 

No upwind differencing is needed. This procedure is typically 
employed for two reasons: 
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1. To ensure convergence of an iterative method. 

2. To avoid mesh size oscillations. 

The first reason no longer applies. The second one alone can 
then be addressed in more refined ways. 

4. Boundary conditions at the body surface become easier to 
implement. The fact that we have two conditions on Q' and none 
on w can cause a problem if (5) and (6) are treated separately. 
With Newton's method, all we need is that the number of 
conditions is right. 

The only disadvantage with Newton's method is the computational 
cost. This is where supercomputers enters our picture. 

SOLUTION OF LINEAR SYSTEM 

Let [UI:., j=2,3 ,...,N be vectors with w -values from grid lines 
293 'hr 9***, and similarly for L3\5 (j=2,...,N-1). For example qZ would 
contain the v -values along the grid row nearest to the 3 -axis and 
qNthe values along the top boundary. The structure of the entries in 
the Jacobian matrix reflects directly on the difference stencils and 
the boundary conditions. Figure 7 shows a suitable ordering of 
equations and unknowns and the corresponding structure of the 
Jacobian. Since the top right corner contains a single diagonal, 
explicit multiples of the top (N-2)(M-2) equations can be superposed 
on the equations below to modify the structure to the one in Figure 
8. The bottom left corner form a separated system of size (N-l)(M-2). 
This was solved by a border algorithm 
descri~~~t~~ [g]. 

similar to the one 
The major cost comes from the LU-factorization of 

A. However, one more rearrangement can be done to achieve a 
significant speedup. The A-matrix has a block 5-diagonal form with 
the structure shown in Figure 8. A similarity transform with a 
permutation matrix can rearrange this into another matrix of 
identical structure. Instead of N-2 rows of blocks, each of size M-2, 
we get M-2 rows of blocks of size N-2. With M typically around 6sT 
and cost proportional to the square of the bandwidth, this reduces 
the memory needed for the LU-decomposition about 6 and the operation 
count by 36. 

The complete linear solver lends itself ideally to 
vectorization. Every part of significant cost turns out take a form 
of a 'linked triad' with vectors never shorter than 4(N-2)+1 or M. 
The linked triad on the Cyber 205 is the fastest floating point 
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operation the machine offers. Expressions of the form 
vector-op-vector-op-scalar where one 'op' is + or -, the other * can 
execute with both operations running simultaneously. On the 2-pipe 
205, the algorithm has a potential for 200 mflops (million floating 
point operations per second, 64-bit accuracy). Including a startup 
cost of 83 macihne cycles per linked triad operation, average vector 
length of around 166 (which we will exceed in later test cases) could 
give a full 100 mflop overall computational performance. In the 
calculations presented below, the grid had 131 by 21 points. 
Building up the Jacobian (in scalar mode) takes 2.3 seconds and the 
solution of the linear system 3.7 seconds (for an average of 55 
mflops during this part). Recently implemented vectorization of the 
Jacobian and the new boundary condition brings these numbers to 0.026 
seconds, 1.75 seconds and 60 mflops respectively. 

PHYSICAL CONCLUSIONS 

This report is a preliminary one of work in progress. Only a few 
initial test runs have been performed so far. However, we can already 
conclude that the wake appears to continue a linear growth in length 
with increasing Reynolds numbers up to Re = 400. Figure 9 shows wake 
length versus Re for some previous calculations compared with current 
results. Figure 10 shows streamlines and Figure 11 vorticity fields 
for different values of Re up to 400. The vorticity field at Re = 
400 shows a recirculation back into the wake from the end of the 
bubble as well as a quite sudden increase in width. Our most recent 
tests with a computational grid of 196 by 31 points (density 
increased by 3/2 in each direction) leaves these features completely 
unchanged. The onset occurs near Re = 300 and the widening progresses 
at a rate which can be determined accurately and which far exceeds 
the one predicted by available asymptotic models. 

The flow fields in figures 10 and 11 were obtained from a 131*21 
grid in the z-plane with 
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(11) 5; f i/l? , i=O,l, . . . ,130 

(15) 
3j 

="<y+ (l-M)Sj, <j = j/18 , j=O,l, . . . ,20 , K=O.15 

This places the right boundary at a distance 115.4 from the center of 
the cylinder. Preliminary tests involving moving this and the top 
boundaries in and out suggest that they are sufficiently far out with 
the present choice of grid. Figure 4 showed part of this grid. 

The major open questions at the moment are: 

Physically: 

1. Will the wake keep on growing? 

2. Are there any other branches of solutions (bifurcations 
etc.)? 

Numerically: 

1. Is there any alternative to Newton's method which still 
possesses a reliable rate of convergence? 

2. Is there any faster way than Gaussian elimination to solve 
the linear system in Newton's method? 

At present, the numerical questions are wide open and of 
fundamental importance to many other applications as well. Current 
numerical methods together with vector computers like the Cyber 205 
probably form sufficiently powerful tools to settle conclusively the 
physical questions raised here. 
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Figure 1. Length of wake brhble for low Reynol.ds numbers according to solne diFFerent calculations. 
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Figure 2. Schematic illustration of free streamline and 
the Prandtl-Batchelor models. 
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Oseen approximation for Re- 200. 
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ABSTRACT 

A computer code which solves the Navier-Stokes equations for three-dimensional, 
time-dependent, homogeneous turbulence has been written for the Cyber 205. The 
code has options fo both 64-hit and 32-hit arithmetic. With 32-hit computation, 
mesh sizes up to 64 5 are contained within core of a 2 million 64-hit word memory. 
Computer speed timing runs were made for various vector lengths up to 6144. 
With this code, speeds a little over 100 Mflops have been achieved on a 2-pipe 
Cyber 205. Several problems encountered in the coding are discussed. 

1. INTRODUCTION 

Turbulent fluid motion is common to many branches of engineering and science. 
Since turbulence phenomena are highly nonlinear, they are not amenable to classi- 
cal analytical approaches. Consequently, turbulence predictions are generally 
based on semi-empirical models. Experiments which generate model information 
are expensive, but are needed because current models are not generally accurate 
enough for engineering purposes. Detailed simulations of turbulent flows can help 
complement laboratory data. Direct numerical simulations of turbulent flows are 
more accurate than current semi-empirical computational methods and can be 
used to both generate physical understanding and to improve the models. In these 
simulations, turbulent flows are directly computed from the Navier-Stokes equa- 
tions. Computations of this type are necessarily three-dimensional and time- 
dependent; they require a large number of grid points, and thus, long computation 
time. The Cyber 205 computer appears ideally suited for efficient numerical 
simulations of this type. Exploration of the use of the Cyber 205 for direct 
numerical simulation of turbulence is a principal objective of this work. 

The basic code was written by one of the authors (RSR). It was modified to take 
advantage of the 205 compiler’s automatic vectorizing capability. Vector syntax 
and special functions were applied to the code segments which could not be auto- 
matically vectorized. Finally, machine language instructions were used for the 
parts of the code that existing compiler could not handle. 
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In the next section, a description of the particular problem to be solved is given. 
In Section 3, the numerical methods used are discussed. This is followed by a brief 
description of the Cyber 205 at Colorado State University. The construction of 
long vectors is discussed in Section 5. In Section 6, performance data obtained to 
date are presented, and in Section 7, problems encountered are described. A typi- 
cal simulation of homogeneous isotropic turbulence is presented in Section 8. In 
the final section, a brief statement of conclusions is presented. 

2. PROBLEM STATEMENT 

Homogeneous turbulent flows, of which there is a considerable variety, can be 
simulated numerically at low Reynolds number without using any turbulence 
model. In the flows we will consider, the computational domain contains a fixed 
mass of fluid within a rectangular parallelepiped, the opposing sides of which can 
move inward or outward with time. Thus, the cases which can be computed are 
quite varied: decaying homogeneous isotropic turbulence is generated if all six 
sides are stationary; turbulence undergoing uniform compression (or expansion) if 
all three pairs of sides move inward (outward) at same rate; turbulence undergoing 
one-dimensional compression, if one pair of sides moves inward; or turbulence 
undergoing plane strain if one pair of sides moves inward at the same rate a 
second pair moves outward, while th.e. third pair remains stationary. Isotropic 
turbulence has been computed before, but turbulence undergoing compression or 
expansion has not. The compression cases are of interest, for example, in internal 
combustion engine modeling and in the interaction of turbulence with a shock 
wave. 

It will be assumed that the Mach number is sufficiently small that the fluid is 
compressed uniformly in space, so that the fluid density depends only on time. 

The governing Navier-Stokes equations for a fluid of uniform viscosity and uni- 
form density in space are: 

where ~1. 1 2 P , v , and t are fluctuating velocity components, fluctuating pressure, 
kinematii viscosity and time respectively. The summation convention is implied. 
This set of governing Navier-Stokes equations allow us to simulate homogeneous 
turbulent flows in Lagrangian coordinate system that moves with the mean flow. 
Coordinate transformation tensor Bij is determined by: 

Note that mean strain rate tensor,%, j is zero and Bij=sij for isotropic homo- 
geneous turbulence. 
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Periodic boundary conditions are applied in all three space directions. The 
velocity field is initialized to an isotropic state that satisfies continuity and has a 
given energy spectrum which approximates that of experimental isotropic tur- 
bulence. 

3. NUMERICAL METHOD 

The spectral method is used to compute all spatial derivatives. This method, 
which uses FFT’s, is good for problems with periodic boundary conditions and has 
very high accuracy. To avoid aliasing ,in the nonlinear terms, both the truncation 
and phase shifting techniques are used. 

A second order Runge-Kutta method is used to advance the solution in time. 
Thus, all spatial derivatives need to be computed twice each time step. The time 
step was chosen small enough that no significant error is produced. It was deter- 
mined by increasing the step size until the error was approximately 1 percent over 
the full integration period. 

4. THE CYBER 205 

The Cyber 205 we are using is ty Colorado State machine with 2-pipes and a 2 
million 64-bit word fast memory. QTE Telenet has been used for data transfer 
between Stanford and CSU. We have found that both are reliable, convenient to 
use, and have provided satisfactory service so far. 

Figure 1 shows the performance for add/multiply as function of vector length. 
The asymptotic performance which requires maximum vector lengih (65535) is 100 
Mflops for 64-hit arithmetic and 200 Mflops for 32-hit arithmetic. 

It is obvious that the performance improves with vector length. Vector length 
1000 (64-hit case) or 2000 (32-bit case) is required to reach 90 percent of the 
asymptotic performance. Constructing a code which uses long vectors is there- 
fore important if maximum performance from the machine is to be obtained. 

5. DATA MANAGEMENT 

Based on the “longer vector gives better performance” philosophy, we chose to do 
the Fourier transforms in parallel. This will be explained in detail later. 

In Figure 2, NX, NY, and NZ are the number of mesh points in the x, y, and z 
directions respectively; MY and MZ are called “pencil sizes”. 

On the first sweep, MZ x-y planes of data are Fourier transformed in the y direc- 
tion in parallel. The transform length is NY, but by doing them in parallel, a 
vector length of NX/2*MZ*3 is achieved; the factor 3 is due to the simultaneous 
processing of three velocity components, and the factor l/2 is due to only half of 
the modes are needed in wave space to represent a real function in physical space. 
To accomplish this, it is useful to lump every dependent variable into a single big 
array. The main array in our code is DATA(NX/2,NY,NZ,4,2); the dimensions 
represent x, y, z, a dependent variable index, and real and imaginary parts of a 
complex number. 
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On the second sweep, MY x-z planes are processed. Fourier transforms in z and x 
directions are done on this sweep. The vector lengths are NX/2*MY*3 and 
NZ*MY*3 respectively. 

A Cyber 205 vector is defined as a contiguous set of memory locations. Since the 
two sweeps are in different directions, an array transp:. ;t? has to be done between 
sweeps and within the second sweep in order to keep processed data in a 
contiguous set of memory locations. The transpose is done by using gather 
instructions. The gather instruction puts array elements which are at various 
locations into a contiguous set of memory locations. An index vector is needed to 
pick up desired elements. Q8VGATHR function (64-hit) or Q8VXTOV subroutine 
(32-hit) is used to do the transposing. As the array gets bigger, so does the index 
vector length, and an appreciable amount of overhead working space is needed. In 
the 643 (32x16) run, the index vector has 17,408 elements. 

6. COMPUTER PERFORMANCE 

The performance data obtained to date, based on a hand count of the number of 
operations per time step, are presented in Table 1. The mesh size is given in 
column 2 (each node requires 7 words of data storage). The pencil size is given in 
column 3; this, together with mesh size, determines the vector length shown in 
column 4. The computational precision is given in column 5, the CPU time in 
column 6., and the CPU computation rate in column 7. The I/O time per step in 
seconds is meaningful only for runs with virtual memory paging. Explicit I/O 
would reduce I/O time considerably, but we have not yet attempted to use explicit 
I/O. 

Figure 3 shows computation rate as function of vector length for our code on the 
2-pipe CSU Cyber 205. It approaches an asymptote as vector length increases. 

Comparing Runs 3 and 4, and Runs 5 and 6 in Table 1, it is found that the CPU 
time for a 32-hit (half) precision run is 60 percent of that for the corresponding 
64-hit (full) precision run. We kept track of the timing in the transpose part of 
the code and found an interesting fact. In full precision runs, the transpose takes 
15 percent of the CPU time; 85 percent of the CPU time is spent in floating point 
operations. In half precision runs, due to the lack of a half precision gather 
utility, the transpose takes the same amount of time as in full precision runs, 
while the floating point operations require only half of the full precision CPU 
time. Consequently, for half precision run, the transpose takes 25 percent of the 
total time. 

Detailed timing from Run 8 shows that 51 percent of the CPU time is spent in the 
FFT subroutine, which contains 78 percent of the floating point operations. In 
other words, the FFT operates at 157.6 Mflops. The remaining 22 percent of the 
floating point operations are executed at 95 Mflops due mainly to shorter vector 
lengths and IF statements. 

7. PROBLEMS ENCOUNTERED 

Runs 7 and 8 of Table 1 require 3.5M words storage, and hence, do not fit within 
the 2M core memory at CSU with full precision. Thus, we must use 32-hit com- 
putation for efficient use of the CSU Cyber 205. Half-precision computation is 
sufficiently accurate for this code, and twice the operating speed is achieved. 
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TABLE l.--PERFORMANCE OF CYBER 205 AT CSU 
(2 PIPES WITH 2M 64-BIT WORD) 

h, 
W 
W 

I I I I I I I 
IE 

MEMORY ZP (M woRDs) COMMENTS 
\ NUlJI2.b I \lN J2P.L) \bLL. I \bLL.) 

8X8X8 8x8 192 64 0.014 23.5 0.02 in core 

32x32~32 4x4 384 64 0.690 31.0 - 0.30 in core 

32x32~32 32x32 3,072 64 0.399 53.6 - 0.69 in core 

32x32~32 32x32 3,072 32 0.240 89.2 0.69 in core 

64x64~64 16x16 3,072 64 3.378 59.6 56.6 2.70 paging 

64x6 4x64 16x16 3,072 32 2.022 99.6 - 2.70 in core 

64x64~64 32x16 4,608 32 1.980 101.7 - 3.47 in core 

64x64~64 32x32 6,144 32 1.914 105.2 8.7 3.52 paging 
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Since there is no compiler avaipble -yet for half precision gather/scatter4 calls, 
we have to use special Q8 calls (machine instructions) to get the half precision 
code to compile properly on the CSU Cyber 205; the special Q8 instructions exe- 
cute at full precision speed. Mr. Herbert Rothmund of CDC Sunnyvale was most 
helpful to us in providing these utilities. 

It is apparent that the I/O rate is not balanced with the CPU time. The reason is 
that the CSU Cyber 205 has only two channels to transfer data between fast 
memory and disk and they are inherently slow. Solid-state backing memory (or 
equivalent) would speed u% the data transfer rate. For our problem, faster I/O 
would allow us to go to 128 mesh size. 

Since December 1982, three different compilers have been used: cycles 201109, 
L575, and 575B. Cycle 20 1109 did not have the half precision feature. Cycle 
L575 had half precision but lacked some automatic vectorization features. Cycle 
575B, the most recent version, does not have gather/scatter in half precision. 
Further improvements are needed if users are to get optimum performance from 
this machine. 

8. SIMULATION OF ISOTROPIC HOMOGENEOUS TURBULENCE 

A typical simulation of homogeneous isotropic turbulent flow is presented in this 
section. Figure 4 shows the time history of the three-dimensional energy spec- 
trum from initial time step to 300 time steps. Figure 5 shows the 3-D spectra of 
the components of the turbulent kinetic energy at time step 300. The flow is 
slightly anisotropic at low wavenumbers. This is due to the small number of 
modes at low wavenumbers. 

All of these resul +s are in excellent agreement with both experiments’ and pre- 
vious simulations. Thus, we are confident that the code is performing satis- 
factorily and we will proceed to the simulation 9f compressed flows. The code 
presently runs at 1.9 second per time step for a 64 mesh on the 2-pipe Cyber 205; 
this compares with 5 seconds for the same type of code on the CRAY-1S in 
VECTO RAL language. 

9. CONCLUSION 

In summary, we have written, debugged, and tested a code for solving the Navier- 
Stokes equations and for computing various turbulence statistical quantities. Mos,J 
of the operations are readily vectorized, and 100 Mflops has been obtained for 64 
mesh size in-core runs on a 2-pipe Cyber 205. The major problems encountered so 
far are concerned with the lack of compiler utilities, such as half-precision com- 
piling capability for transpose operations. 

The program works well and has been validated for homogeneous isotropic tur- 
bulence. The code will next be used to help develop turbulence models for com- 
pressed flow in engines. 
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NOMENCLATUZZE 

Bij 

MY 

MZ 

NX 

NY 

NZ 

P’ 

t 

‘i,j 
U. 1 

X 

Coordinate transformation tensor 

Pencil size in Y-direction 

Pencil size in Z-direction 

Number of mesh points in X-direction 

Number of mesh points in Y-direction 

Number of mesh points in Z-direction 

Pressure fluctuations 

Time 

Mean strain rate tensor 

Velocity fluctuations in i-direction 

Space coordinate 

Y Space coordinate 

6:j 

-P 

Space coordinate 

Kronecker delta 

Kinematic viscosity 
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Abstract 

Many important algorithms for solving problema in linear algebra require 

the repeated computation of the matrix-vector product b = Ax where A is 

symmetric and sparse. Examples are the conjugate gradient and Lanczos 

methods. 

This work has been directed toward the development of an efficient 

algorithm for performing this computation on the CYBER-203. The desire to 

provide software which gives the user the choice between the often conflicting 

goals of minimizing central processing (CPU) time or storage requirements has 

led to a diagonal-baaed algorithm in which one of three types of storage is 

selected for each diagonal. For each storage type, an initialization sub- 

routine estimates the CPU and storage requirements based upon results from 

previously performed numerical experimentation. These requirementa are 
adjusted by weights provided by the user which reflect the relative importance 

the user places on the two resources. 

The three storage types anployed were chosen to be efficient on the 

CYBER-203 for diagonals which are sparse, moderately sparse, or dense: 

however, for many densities, no diagonal type is most efficient with respect 

to both resource requirements. The user-supplied weights dictate the choice. 

Introduction 

Many of the important numerical techniques used today to solve linear 

equations require repeated computation of a symmetric matrix times a vector. 

Examples are the conjugate gradient method, with all its variants, for solving 

243 



simultaneous linear equations (refs. 1 and 2) and the Lanczos algorithm for 

eigenvalue and eigenvector extraction (ref. 3). These methods are 

particularly attractive when the matrix is sparse since, unlike direct 

methods, they do not require storage of the entire matrix. The matrix is only 

used to multiply a vector and to do this one only needs to know the nonzero 

elements and their position within the matrix. 

The primary objective of this work has heen to develop software for the 

CYBER-203 that provides an efficient means for computing b = Ax when A is 

an n x n, symmetric, sparse matrix. 

Because use of vector hardware instructions on a vector processor has 

very definite implications about the storage, a user's desire to minimize both 

the required central processing unit (CPW) time and the total storage needed 

to represent A are often conflicting goals. Thus, a more specific objective 

of the work has been to design the software so that it provides alternative 

storage/computational procedures for the matrix A and automatically selects 

the procedure which best reflects the users relative concerns about minimizing 

the two resources. 

These objectives have led to the development of a diagonal-based storage 

and computation scheme in which a preprocessing subroutine, OlPACT, chooses 

one of three storage methods for each diagonal using CPU and storage estimates 

and user-provided resource weighting information. The subroutine, CMXV, can 

be called repeatedly to compute Ax using the compact form of matrix A. 

Subsequent sections of the paper will describe the relevant CYBER-203 

instructions used, the diagonal-based algorithm with the tradeoffs between the 

methods, a description of the implementation used, and results for several 

sparse matrices. 
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CYBER-203 Characteristics 

The CYBER-203 at Langley Research Center is a vector processing computer 

capable of producing 50 million floating point results (64 bit) for a vector 

addition and 25 million for a vector multiplication. It has one million words 

of bit addressable central memory in a virtual memory architecture. 

The high CPU rates are achieved by operations on long vectors whose 

components, by definition, are consecutively stored in memory. However, if 

vector lengths are short (say, 50 or less), the fast scalar capability makes 

serial computation superior. 

In addition to the usual arithmetic operations (+, -, l , and +I, several 

nontypical hardware instructions exist which proved useful in this work. 

These were the vector compare, compress, expand, and bit count. Figure 1 

demonstrates their use. 
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Diagonal-Based Matrix Multiplication 

It is possible to describe the multiplication process b - Ax for a 

matrix A in terms of elements of each diagonal. Let A(A) denote the 

P superdiagonal (also the Qth subdiagonal since A is symmetric) and let 

A+) be the k* component. That is, &k(g) = ak,k+E = ak+ll,k' The procedure 

for computing, b = Ax for the nxn matrix A is 

bk f qtCo1 5 k = 1,2,...,n. 

For 11 = 1,2,...,n-1. 

bk f bk + qtca) xk+lc for k - 1,2,...,n-L (11 

bk+L + bk+E + %('I "k for k - 1,2,...,n-L (21 

End F 

Note that if A is banded, 11 need only go from 1 to the bandwidth B 

and that if any diagonals are identically zero, they can tm easily identified 

and all computation for 'them in (1) and (21 can be omitted, 

The diagonal-based scheme has been selected as the foundation for this 

work for several reasons: 

a. Nonzero structure of real problems - Many matrices arising from finite 

difference or finite element formulations naturally lead to a sparsity 

pattern in which most of the nonzeros lie along a few of the diagonals. 

The 5 diagonal matrix arising from central differencing of Poisson's 

equation is an extreme example. Of course, there the pattern is so pre- 

dictable that special storage techniques are not needed; but for irregular 

grids, or more complex equations with more complicated differencing, the 

sparsity is not so easily specified. This is especially true in finite 

element formulations where one of the strengths of the method is the 

ability to use nonuniform elements. 
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b. Vectorization - The n - 11 multiplications and additions in equations (1) 

and (2) can be carried out by vector operations of length n - 11. 

C. Symmetry of diagonals - 'Ihe a th subdiagonal is also the P super- 

diagonal. Since equations (1) and (2) are identical in form, the storage 

and computation most appropriate for the subdiagonal is also most appro- 

priate for ,the superdiagonal. 

Storage Tradeoffs 

The vector computations implied in equations (1) and (2) assume A(111 is 

available as a vector of length n - 11. However, if the diagonal is rela- 

tively sparse, one might not want to store the entire diagonal with all its 

zeros. In fact, if the diagonal is very sparse, neither vector storage nor 

vector computation is likely to be very efficient. 

Described below are three types of diagonal storage and their associated 

computation to execute equations (1) and (2). 

Full Vector (Type 1) - Here the entire diagonal is stored including any 

zeros. Vectors of length n - h are used. This mode will be most 

efficient when A(111 is very dense. 

Compressed Vector Plus Bit Pattern (Type 2) - Here only the nonzeros are 

stored along with a bit vector to give positional information within the 

diagonal. he computation is identical to that with type 1 diagonals 

after an expand is performed to generate the full diagonal A(t). The 

extra expand makes type 2 CPU requirements always exceed type 1, but the 

storage can be considerably less. 

Compressed Vector Plus Row Pointers (Type 3) - Here the assumption iS that 

A(a) is so sparse that it will be inefficient to expand the compressed 

vector. Equations (1) and (2) are executed serially making use of the row 

indices stored for positional information. 
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Figures (2) and (3) show the CPU and storage requirements for a diagonal 

of length 1000 as a function of density. A comparison of the two figures 

shows that, unfortunately, one cannot identify intervals of density where a 

particular diagonal type is most efficient with respect to both resources. 

For instance type 3 CPU is least for d C 0.11 but has a greater storage 

requirement than type 2 for d > 0.02. Even in those regions where one 

diagonal type is most efficient for both resources (typp 1 for very dense and 

type 3 for very sparse), the boundaries of these regions vary with the length 

of the diagonal. 

Since the minimization of both resources is frequently not possible, and 

since different users may attach di fferent importances to the two resources, 

it was decided to let the user influence the storage selection through 

resource weighting factors. To implement this the initialization subroutine, 

IMPACT, does the following for each diagonal: 

(1) Estimates the CPU and storage requirements for each of the three candidate 

types. 

(2) Applies a user-supplied weight to compute the weighted resource require- 

ment for each method. 

(3) Selects the storage type that minimizes the sum of the two weighted 

resource requirements. 

That is, denoting the 

diagonal type by Sj and 

predicted storage 

C. 3 respectively, 

and CPU requirements for the jth 

their'minimum by s, and cm, the 

users specified weighting by sw and cw. then the normalized and weighted 

resource, r., for the 3 jth diagonal type is computed as 

r. = 5s ,=a 
' 'min w 

++c W j = 1,2,3 
min 

Subroutine IMPACT computes rj and selects the diagonal type which yields the 

minimum value of r. 
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For this.approach, aPACT must be able to estimate Sj and c. 3 for 

all n and d. The storage estimates are easily made in terms of a diagonal 

of length n having z nonzeros. 

s1 = n 

s2 =z+w 

s3 = 22 

where w is the least number of 64-bit words needed to hold n bits. 

The CPU estimates were obtained by timing the computation for a range 

of n and density d. For:type 1 and 3 diagonals, single formulas were 

obtained, but the complexity of the expand used in type 2 diagonal computation 

required a table of values. The time in.microseconds to perform the computa- 

tions implied in equations (1) and (2) for a single diagonal can be estimated 

by 

c1 = 29 + 0.122 n 

C2 = See Table I 

C 3 = 7 + 1.74 2 

Since these values are used only in a selection process, their accuracy 

to a percent or two is sufficient. 

Table I.- Type 2 diagonal CPU times (microseconds) as a function 

T 
n I- 

100 

500 

5000 

of diaqonal length n and density d. 

0. 

53 

123 

901 

d 

.l .2 .4 .6 .a 1.0 

53 53 57 60 63 68 

123 124 141 160 176 197 

901 918 997 1134 1280 1429 
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Implementation 

The matrix is received in subroutine 03PAC!C in its expanded form as an 

N by IB array. Each of the IB diagonals is treated individually as the 

compact representation, array C, is formed. C is a linear array in which 

the pertinent data for the Lth diagonal is stored behind that for the L - lst 

diagonal. As illustrated in figure 4, this can be, for types 1, 2, or 3 

respectively, either the entire diagonal, the nonzero bit pattern for the 

diagonal followed by the nonzeros, or the nonzeros and index data. A vector 

compare with broadcast zero generates the bit pattern and provides the number 

of nonzeros and density. If the weighting procedure determines that the 

diagonal should be type 2 or 3, a compress is performed. In addition, two 

integers for each diagonal are stored in a separate array. The first identi- 

fies the diagonal type and the second the number of nonzeros in the diagonal. 

The subroutine returns to the user the CPU and storage estimates for the 

user provided weights. In addition the estimates for combinations sw = 1, 

cw =O and ~~-0, s = 1 are retwrned to aid the user to adjust his weights 

in subsequent computations. 
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11 - 1st 
diagonal 

lIth diagonal 

A(111 = [a 3 0 0 

I 

11- lst 
diagonal 

B t-64 bits B-e 
8 
3 
1 

~ 

lath diagonal 

2 

21 

B= [1100110...01 

C 

64 bits 

Figure 4 - Storage for A(111 (n - a = 6). 

Results 

Results from two test matrices are presented here to demonstrate the 

effect and control the user has on the matrix storage and computational 

requirements by giving the statistics for different combinations of sw and 

CW= 
Refer to Tables II and III. 

Case 1 - This is a randomly generated matrix with 400 equations and a 

bandwidth of 21. The densities are approximately uniformly distributed 

between 0. and 1. The average density is 55.7%. The storage selection that 

minimizes the CPU time (1.57 msec; mostly type 1) yields the largest storage 

requirement. The selection to minimize storage (4713 words; mostly type 2) 

yields the largest computation time. 
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Case 2 - This is a sparse matrix resulting from a finite element formula- 

tion with triangular elements and 3 degrees of freedom at each node. The 

matrix has 1086 equations, a bandwidth of 81, and an average density of 7.8%. 

Most of the diagonals are sparse. Of the 81 diagonals, 57 are less than 5% 

dense and approximately half of the nonzeros are on the four diagonals closest 

to the main diagonal. Because of the relatively few dense diagonals, most of 

the diagonals are type 2 (to minimize storage) or type 3 (to minimize CPU). 

Both examples demonstrate the conflicting goals of minimizing both 

resources. They also show that use of the weighting factors can give the user 

a rather wide range of resource distributions. For instance, in the second 

example a weighting of 1 for cw leads to a CPU time that is minimum but a 

storage requirement which is 1.73 times that if one set sw = 1. However, 

setting sw = 1 yields a CPU time which is 2.6 times the minimum. A reason- 

able middle ground occurs when sw = cw = 0.5. In this case, the CPU is 1.09 

times the minimum and the storage is 1.2 times the minimum. 
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Table II.- Case 1; 21 jc 400 random matrix. 

Weights Resources Diagonal Selection 

--__ 
-I-----’ 

I 
C” SW 

Storage 2 3 
CPU 

(Sets) 

.00271 

5481 

6053 

Table III,- Case 2; 81 x 1086 finite element matrix. 

Weights Resources Diagonal Selection 

cW 

0 

.3 

.5 

-7 

1 

sW 

1 

.7 

.5 

.3 

0 

CPU 
(Sets) 

.01680 

CPU 
(Sets) 

.01680 

.00800 

.00703 

.00682 

.00646 

.00800 

.00703 

.00682 

I .00646 

Storage 

8032 

9200 

9622 

9820 

13883 

2 

72 8 

17 61 

8 

4 

0 

70 

74 

73 

3 
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This paper has described a computational and storage algorithm for sparse 

matrix multiplication on the CYBER-203. The multiplication is performed using 

diagonals of the matrix as the candidate vectors since this is where nonzero 

patterns predominate in many scientific applications. Three types of diagonal 

sparsity patterns are identified (roughly speaking, either dense, moderately 

sparse, or sparse) and storage and computational procedures developed for 

each. 

Since, for most densities, no single diagonal type minimizes both storage 

and CPU requirements, an initialization subroutine selects the most 

"efficient" type for the diagonal based on estimated resource requirements and 

user-provided weights which indicate the relative importance the user attaches 

to each resource. 

Etxamples are given which illustrate that, for a given matrix, the weights 

can be used to achieve minimal CPU time (at the expense of storage) or minimal 

storage (at the expense of CPU time) or some compromise between the two. 
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The canputatlonal aspects of modeling material failure in structural wood 

members are presented with particular reference to vector processing aspects. 

Wood members are considered to be highly orthotropic, I nhomogeneous, and 

discontlnuour due to the complex mlcrostructure of wood materrat and the pres- 

ence of natural growth character fstics such as knots, cracks and cross gral n 

In wood members. The slmulatlon of strength behavlor of wood members is 

accanpllshed through the use of a special purpose finite element/fracture 

mechanics routtne, program STARW (Xrengtli Analysts Routfne for Wood). Pro- 

gram STARW employs quadratlc ftnlte elements combined wlth singular crack tfp 

elements In a ffnlte element mesh which accounts for the canplexltles Inherent 

I n wooa structural members. The need to use a highly refined flnlte element 

mesh to adequately model material behavior, results In the formulatlon of 

tnousands of simultaneous equations which must be generated and solved repeat- 

edly to model the nonlinear failure process which occurs. The aval labi I Ity of 

the CUBER 205 at Colorado State Unlverslty has made lmplementatlon of program 

STARW at the level described not only possible, but also relatively econanl- 

cal. Vector processing techniques are employed in mesh generation, stlffness 

matrix formation, slmultaneous.equatlon solution, and materlal failure calcu- 

lations. .The paper addresses these techniques along with the time and effort 

requlrernents needed to convert existing flnlte element code to a vectorized 

lzed and nonvectorlted vers 

rout 

ion. Comparisons In execution time between vector 

,I nes are prov I ded. 
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Accurate knowledge ot the strength of a structural member Is essentlal 

lnformatlon to the deslgn engineer concerned with structural safety and effl- 

clent material use. A means to predict material strength Is necessary, since 

all materlals exhibit some varlablllty in strength and It is not feaslble to 

pnyslcally test every structural member to determlne Its load carrying capa- 

city. The sophlstlcatlon of strength predlctlon models have generally 

advanced, not only with the dlscovery and reflnement of new computatlonal 

methods, but also h ..h the Increase In computer capabllltles which enable 

etflclent application of the new methods. 

In the case ot wooa structural members, the current strength prediction 

method is a highly approxlmate procedure based on empirIcal concepts from the 

1930’s. This results In a strength predlctlon that Is relatively uncertain. 

The current strength predictlon procedure Is based on the results of physical 

tests because until now It has not been possible to mathematlcally model wood 

member failure and ratlonally predict strength. The most obvious dffflcul- 

ties; orthotropic material propertles, the presence of knots and associated 

grain devlatlons, and the presence .of cracks from seasonlng and partial 

material failure, can now be successfully modeled with program STARW (zrength 

Analysl’s Routine for hood) (21. 

The nature of the nonllnear failure modeling process, presents a cunputa- 

tional problem of such a I arge magn I tude that It can not be efficiently 

accomplished on computers that do not have the capacity of a CYBER 205. Pro- 

gram STARW represents a case where modest effort In Invoking vector processing 

syntax has not only made lmplementatlon of the program posslble, but has also 

resulted In a relatively econcmlcal solutlon. 
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Program STARW uses two-dimensional orthotropic finite elements to model 

behav 

siie 

or in the longitudinal-transverse plane of a loaded wood member. Ten- 

oad is appl ed in the longitudinal direction as shown in Fig. 1. I 

I I -I I 

-- 

- 

- 

KNOT ASSOCIATED CROSSGRAIN 

APPLIED STRESS / 

Figure 1. Loaded Wood Structural Member 
(Longitudinal-Transverse Plane) 

A knot in a structural specimen of wood creates localized grain deviatlon 

as indicated in Fig. 1. This grain deviation has an extremely important 

etfect on stress distributions at locatlons near the knot (3). An I terat I ve 

procedure to locate mesh coordinates corresponding to the grain deviation 

around a knot is employed in program STARW: This procedure relates distortion 

of wood grain around a knot to streamlines of laminar fluid flow around an 

eliiptlcal object and has therefore been named the “flow-grain analogy” (4). 
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Utiilzing the flow-grain analogy, a representatlve finite element mesh is 

autanatically constructed of eight node quadrilateral elements, six node trl- 

angular elements, and eight node slnguiar elements. Since tangential elastic 

stiffness of wood may be as little as l/20 of the longitudinal elastic stlff- 

ness, all three types of finite elements are requlred to model different elas- 

tic mater I a I behavior in the longitudlnai and tangential directions. 

Appropriate elastic stiffness values for each element are automatically 

assigned. 

Singular elements are used to model material behavior around the tip of 

cracks that form as the load on the member is Increased. These elements were 

developed using theory fran linear elastic fracture mechanics (1). Experlmen- 

tal investigations have indicated that cracks in structural lumber will usu- 

ally form ana propagate along a grain Ilne.- Thus, cracks are modeled by pro- 

gram STARW by wuntlpping @I the flnite element mesh along the material separa- 

tion ana placing the singular elements arouna the crack tlp. A resulting fln- 

Ite element mesh Is shown in Fig. 2. The wunzi pping” process and p I acement of 

tne singular elements are pertormed automatlcally upon cue by the user when 

the appropriate failure conditions are indicated In the program output. 
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Direction of Applied Strers 

T T-T-trnf 

I I 
, I 

I 
I I III1 II 1 

I II I I I 

I I 

c 

I I 

Knot 
krack 

four Singular Elements 
Around the Crack Tip 

Figure 2. Example Finite Element Mesh Inc luding Crack 

The output directly calculated frcm each analys is is as follows: 

1) Horizontal and vertical displacement at each node 1 n the mesh. 

2) Stresses for each element, parallel-to-grain, perpendicular-to- 

grain, and shear. 

3) Stress Intensity factors resulting from the use of singular ele- 

ments. 

4) A failure summary that indicates to the user what appropriate 

action should be taken to model the next step in the failure pro- 

cess. 
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The stress intensity factors directly reflect the strength of the stress field 

around the crack ti p. The stress intensity factors are canpared within the 

program to a fracture criteria for structural wood members to determlne if the 

existlng crack propagates at a given applled load. The element stresses are 

compared to a failure crlterla for structural wood members to determlne if a 

crack wlll form near the element under consfderatlon. The results of these 

comparisons are expressed in the faliure summary. 

Analyses are performed repeatedly with stress and stress intensity fac- 

tors monltored at each step and compared wlthln the program logic to the 

fracture/failure criteria. As the load on the member Is increased, more 

cracking and materlal failure occurs. The user, based on the Information in 

the failure sumnary and the overall stress picture, gfves the program the 

necessary lnformatlon to model the successive step in the failure process. In 

the future, as research progresses, program logic will be expanded to Include 

the declslon making process the user currently makes based on the fallure sum- 

mary. Failure may be continually modeled In this fashion until the member 

unuer consideration has failed to the point where it cannot reslst an increase 

in load. At thls point, the predicted strength Is real ited. In studylng the 

may typlca I I y be performed before the 

led diagram I of the failure model is 

behavlor of a wood member, 30 analyses 

member reaches its capacity. A simpl If 

contalnea In Fig. 3. 
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INPUT INITIAL MRAMETERS 

4 

ARE APPLIED LOADS ULTIMATE STRENGTH 
REALIZED 

CHECK FAILURE/FRACTURE CRITERIA 

Figure 3. Strength Predlction Model 

FCTS AND IMPl lCATJDNS DF VPCTDR1’ATUU 

For each analysis, program STARW pertorms f I ve general sets of cunputa- 

tlons: 

1) Generation of a sultable finite element mesh using the flow-grain anal- 

ogy and an unzipping process to include cracks. 

2) Formation of a set of simultaneous equatlons which may be 2000 to 5000 

equations In length. 

31 Solution of the simultaneous equations using Gauss eliminatlon. 
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4) Caicuiatlon and coordinate transformation of element stresses based on 

the solution vector and the element grain angles. 

5) CunpuTations with the failure/fracture criteria using element stresses 

and stress intensity factors as input. 

Routines included in Items 1 through 4 exlsted in limited form and were 

executed for small problems on a CYBER 720 prior to application on the CYBER 

205. Failure calculatrons In Item 5 and additional mesh generation capablli- 

ties were added and designed specifically for use on the CYBER 205. After 

compiler inauced vectorization proved to be Inadequate, in significantly 

reducing execution time, It became apparent that it was essential to expli- 

citly vec+orize selected portlons of the existing routines. At the same time, 

it was not the primary goal of the project to expend unlimlted effort to 

achieve tne maxlmum in vector processing, rather the goal was to produce a 

powerf u I research tool that could be econanically implemented. The bulk of 

the conversion (and execution time savings) were achieved with modest effort 

after becanlng familiar with vector processing syntax. 

To date, a means to vectorize the Iterative solution of the fluld mechan- 

Its equations contained in the flow-grain analogy has not been establlshed. 

Thls is not of great concern since, as in many finite element routines, mesh 

generation does not account for a significant portion of the total execution 

time. However, the unzipping of the finite element mesh to model cracks 

involves, in part, a uniform renumbering of nodal points. This renumberlng is 

easily accomplished with basic vector commands since nodal coordinates are 

stored In vector form. 
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Formatlon ot the set of simultaneous equations can typically take from 5 

to 50 per cent of total execution time In a unvectorlred flnlte element 

analysis. In program STARW, a 16 by 16 element stiffness matrix must be con- 

structed for each element and properly combined wlth other element stlffness 

matrices to form the CoWflClent matrix (global stiffness matrix) of the 

s Imu I taneous equations. Formatlon of the 16 by 16 matrlx Involves dot pro- 

ducts OT vectors of length 16. Some tlme savings Is attal ned here through the 

use of the CYBER @SOOT command even though the vector length Is rather small. 

Solution of the simultaneous equations typlcally requlres 40 to 90 per- 

cent of the total execution tlme of a finite element analysis. The 90 percent 

figure Is not uncommon for large two-dImensIonal analyses. Therefore, I arge 

time savings can be attalned by vectorlzing the solutlon algorithm alone. In 

program STARW, Gauss elimlnatlon Is used to decompose the global stlffness 

matr I x, followed by a back substltutlon to obtain the solution. For the prob- 

lem unaer conslderatlon the stiffness matrix Is banded and synnnetrlc, and 

therefore, only the upper diagonal half of the matrix Is stored. Furthermore, 

If the global stiffness matrix Is stored In columns rather than rows, then 

adJacent terms In a row of the global stiffness matrlx will be stored contlgu- 

ously. Since Gauss elimlnatlon Involves operations of one row upon another, 

by storing the matrix as described, each row will be a vector. wGatherw and 

“scatter n vector formatlon commands are unnecessary. Gauss ellmlnatlon 

Involves operatlons on the matrix rows In a number of nested DO loops. Vector- 

izatlon of even the Inner most loop results In large time savlngs. Back sub- 

stltutlon Involves repeated dot products of prevlously formed vectors. This 

can agaln be easily accanpllshed with the CYBER QBSDCT command. An unvector- 

ited and otherwise identical vectorlzed portlon of the back substltutfon Is 

shown In Flg. 4 to illustrate typICal vectorlratlon. 
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Do 460 J=2,JEND 
Jl = Il+J-1 
B(H) = B(11') - A(J,Il) * B(J1) 

460 CONTINUE 

LE=JEND-1 
Jl = I1 + 1 
B(H) = B(H) - QBSDOT (A(28 It; LE), B(Jlr LE)) 

Figure 4. Example DO Loop and Corresponding Vector Syntax 

With the so lutfon of the equations established, element stra Ins and 

stresses can be calculated In global coordinates. Since this calculation Is 

essentially the same for every element, and care fs taken to store the neces- 

sary quantltles In vector form, basic vector operations accanpllsh this task. 

The solutlon vector Is found In the global coordinate system and thus the cal- 

culated stresses are also expressed In this system. It Is desfreable, however, 

to know the stresses in the coordinate system of each element or the 

perpendicular-to-grafn and parallel-to-grain directions. The element stresses 

must be transformed according to the element grain angle. Since the element 

grain angles are stored contiguously and In order, this computation can be 

accomplished with basic vector commands. 

To complete an analysis, the stresses and stress intensity factors for 

cracks must be I nserted I nto the failure/fracture criteria. The 

failure/fracture criteria interfaces the mathematical results from an analysls 
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to the real f lfe fal lure aCtiOnS. Required lnformatlon includes the maximum 

stresses and thefr locations within the flow-grain mesh. Since stresses are 

stored in element order in vectors, thfs fnformatfon can be obtained much 

quicker and more easily by using CYBER Q8 commands than with scalar search 

algorithms. 

To put the vectorlzatlon dlscussed Into perspective, a typical problem 

was ana I yzed uslng unvectorlzed and vectorlzed routlnes. Since unvectorlzed 

versions of the mesh generator (Item #I) and the maximum stress searching rou- 

tine (Item #5) do not exist, vectorlzed routines had to be used for both sides 

of the example. The example problem consisted of 4180 degrees of freedom 

(equations) and for sfmplfffcation no cracks were included. The corresponding 

CPU execu+lon times for different phases of the analysis are shown in Table 1. 

TABLE 1. EFFICIENCY OF EXECUTION TIME FOR VECTORIZED ROUTINES 

UNVECTORIZED VECTORIZED EFFICIENCY 
TIME IN SEC, TIME IN SEC, UNVECT/VECT 

MESH GENERATION 1.90 1.90 1.00 

STIFFNESS MATRIX FORMATION 4.84 2.80 1.73 

SOLUTION OF EQUATIONS 97.87 4.91 19.90 

MISCELLANEOUS COMPUTATIONS 5.05 4.60 1.10 ---*--------------*-------------*------- 
TOTAL 109.66 14.21 7.70 

As clearly shown for this problem, the vectorfzed equation solver was 20 

times faster than its otherwise identical unvectorfzed version. Thls savings, 

along with other vectorfzatfon, reduced analysis time by nearly a factor of 
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ef ght. One will note that while the miscellaneous computations were somewhat 

fnsfgnfffcant in the unvectorfzed analysis, they take on new importance in 

tne vectorfred analysis. Addltlonal effort may be well spent In further vec- 

torfzatfon of the miscelfaneous computations. 

Failure in wood members Is belng successfully modeled and analytfcally 

Investigated in greater detail than before possible through implementation of 

program STARW on the CYBER 205 (2). An understanding of material fal lure Is 

essentf al to accurately predict member strength and to safely and efficiently 

use tne material in engineering application. 

Vectorlzatlon of program STARW has reduced an unwleldly and expensive, 

nonllnear fallure model Ing method Into an efflclent research tool. Vector I za- 

tlon of exlstfng routines need not be a lengthy and laborious effort to 

achieve execution time savlngs. It has been shown that careful organfzatlon of 

cperands Into vectors and modest effort In invoklng vector syntax can cut pro- 

gram execution time by a factor of nearly 8 for a typical problem In thls 

research. The largest savings Is realized In the solution of the simultaneous 

equations. 

While use of program STARW is expected to provlde new Information on 

fracture and failure in wood members, the avaflabillty of machines with the 

capabillrfes of the CYBER 205, in general holds promise for advances in the 

analytical model fng of all materials. These advances in research will fnl- 

tiate new applications of materials and more efficient and reliable use of 

materials in exfstlng applications. 
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ABSTRACT 

Very efficient algorithms for solving large sparse systems of 
simultaneous linear equations have been developed for serial 
processing computers. These involve a reordering of matrix 
rows and columns in order to obtain a near triangular pattern 
of non-zero elements. Then an LU factorization is developed to 
represent the matrix inverse in terms of a sequence of 
elementary gaussian eliminations, or pivots. 

In this paper we show how to adapt these algorithms for 
efficient implementation on vector processors. Results 
obtained on the CYBER 200 Model 205 are presented for a series 

of large test problems which show the comparative advantages of 
the triangularization and vector processing algorithms. 
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Preliminary Results in Implementing a Model of the 
World Economy on the Cyber 205: A Case of Large 

Sparse Nonsymmetric Linear Equations 

Abstract 

Daniel B. Szyld 
Institute for Economic Analysis 

New York University 

A brief description of the Model of the World Economy 
implemented at the Institute for Economic Analysis is 
presented, together with our experience in converting the 
software to vector code. 

For each time period, the model is reduced to a linear 
system of over 2000 variables. The matrix of coefficients 
has a bordered block diagonal structure, and we show how some? 
of the matrix operations can be carried out on all diagonal 
blocks at once. 

We present some other details of the algorithms and 
report running times. 
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1. Description of the Model 

The first input-output model of the world economy was 

originally developed for the United Nations by Leontief, Carter 

and Petri [1977] as a tool for evaluating alternative long-term 

economic policies. The most recent version that has been 

implemented spans the period 1970-2030 in lo-year intervals. 

The model is dynamic in the sense that the solution for each 

lo-year period requires information obtained from the solution 

for the previous period. In this paper we focus on the solution 

of a single time period. 

In the current version of the model, the world is divided 

into 16 regions (r=16) and for each of the regions the detailed 

economic activities are described by a set of linear algebraic 

equations of the form 

AiLi + Six = 0 (i = l,...,r). (1) 

The components of the vectors Yi correspond to levels of 

domestic production, imports, and exports of goods and ser- 

vices, and so on, for each region, and w is the vector of _ 

total world exports. In addition there are global constraints 

described by the equation 

i 
i=l 

Giyi = 0 , (2) 

which imposes the consistency among regional trade relations. 

A more detailed description of the model can be found in 

Leontief, Carter and Petri [19771, Duchin and Szyld [1979], and 

Szyld [19811. 
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All the matrices involved are very sparse. For example 

Ai could be 200 x 250 with 2500 nonzeros. 

Si could be 200 x 50 with 50 nonzeros. 

Gi could be 50 x 250 with 100 nonzeros. 

Each matrix Ai has more columns than rows and therefore some 

components of Yi have to be prescribed. 

If Xi are the vectors of unknown components of Yi and Mi 

and Ei are the corresponding submatrices of Ai and Gir the whole 

model for a single time period can be regarded as a linear 

system of equations of over 3000 variables with a nonsymmetric 

bordered block diagonal matrix of coefficients of the form: 

Ml 81 Xl 
M2 s2 x2 

. . . 
. . . 

. : . 
Mr sr Xr 

ElE2...E, 0 w 

where the blank blocks in the matrix are zero blocks. 

bl 
b2 
. 

= . 

ir 
0 - 

(3) 

When the model was first implemented, the program for 

the solution of (3) inverted the matrices Mi and stored the 

inverses. The approximate computer time to perform this task 

was 4 hours on a PDP-11. The (dense) inverses were saved for 

subsequent runs during which they were updated depending on 

the components of xi p rescribed and on changes in the.matrices 

Ai. Each of these subsequent runs required 110 seconds on an 

IBM 370 for each time period. 

The set of prescribed components of Yi and the matrices 

are used to determine a scenario, i.e., a set of economic 

assumptions. Studies carried out with the World Model compare 
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results of different scenarios, i.e., the implications of the 

different assumptions. The consequences of the introduction 

of new technologies, different development strategies, or 

shifts in trade patterns are among the numerous scenarios that 

can be analyzed. Thus, the World Model is a flexible tool to 

analyze alternative policies. Several large scale empirical 

studies have been carried out with this model. The most recent 

ones are reported in Leontief and Duchin [19831, Leontief and 

Sohn [19821, Leontief, Koo, Nasar and Sohn [19831 and Leontief, 

Mariscal and Sohn [19821. 

To make this tool much more flexible we needed to greatly 

reduce the computational resources required to run a scenario. 

A first step in that direction was the application of sparse 

matrix techniques for the solution of (3). In the present 

implementation the matrices Ai are stored using a sparse 

scheme, i.e., only the nonzero elements are stored, together 

with some integer arrays indicating their locations. A single 

array of approximate length 3200 contains all vectors Xi, i=l,...r. 

Other such arrays contain the vectors bi, the nonzero values 

of the matrices Si and Gi, or other data objects. Similarly, 

objects like the nonzeros of the matrices Mi appear in single 

arrays of length close to 5000. 

2. Method of Solution 

The algorithmic details of the solution of (3) are given 

Duchin and Szyld [1979], Szyld [19811, and Furlong and Szyld 

[1982]. Here we enumerate the operations for the solution 

of (3) very schematically. 
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loop 1. For i=l,...,r 

1.1. Bead Ai,Gi,Sir and the prescribed elements of xi 

1.2. Produce MirEi and bi 

1.3. Obtain factorization of Mi 

loop 2. For i=l,...,r 

2.1. Prepare different right hand sides with columns of Si 

2.2. Solve systems with matrix Mi 

loop 3. Obtain 2 

loop 4. For i=l,...,r 

4.1. Compute &i - Six 

4.2. Solve Mizi = ki - Six 

The factorization of the matrices Mi (in step 1.3) and the 

solution of several linear systems with them (in steps 2.2 and 

4.2) are performed with routines from the MA28 set developed 

by Duff [19771. 

We report the running times for a single time period with 

this method of solution without any vector code in Table 1. 

Table 1. 

System/compiler options CPU sec. 

IBM 370/168 -38 

IBM 3033 -20 

Cyber 205, no options 11.46 

Cyber 205, vectorization by the compiler 1 9.04 
. 
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Architectural features combined with the sparse matrix 

techniques resulted in running times three to ten times faster 

than the 110 seconds that subsequent runs required after compu- 

tation of the inverses in the first implementation of the 

World Model. The goal is now to obtain vector code for the 

Cyber 205 that will further reduce the overall running time. 

3. Code vectorization 

The redesign of the World Model software for its efficient 

use on the Cyber 205 was conceived in three phases: 

I. Elementary operations over all regions 

II. The MA28 package inner loops 

III. New concepts for MA28 

Phase I consists essentially of the vectorization of all 

operations except those associated with the factoring of the 

matrices Mi and solutions of-the corresponding linear systems. 

Those operations correspond &o steps 1.2, 2.1, and 4.1. Each 

of these steps has a different structure but they all are 

loops operating on vectors of length about 200, inside another 

loop of length 16. The basic idea was to split the outer loop 

and perform simultaneously the operations on all vectors of the 

different regions, i.e., on vectors of length of about 3200. 

Cyber 205 FORTRAN commands such as scatter, gather and bit 

operations were used throughout. 

We illustrate the vectorization of step 4.1. The length 

of w is about 50. Si is a rectangular matrix of about 200 rows, 

with only one nonzero entry per column. It is stored as a 

vector with an accompanying integer array indicating in which 
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row each nonzero entry lies. The following FORTRAN statements 

are part of sequential code for step 4.1. 

DO 100 II=l,NREG 
IBEG=(II-l)*NTRADE 
IBEGB=IPNTB(II)-1 
DO 50 I=l,NTRADE 

INDEX=KTRDBG(IBEG+IJ+IBEGB 
B(INDEX)=B(INDEX)-EXPSH(I+IBEG)*W(I) 

50 CONTINUE 
100 CONTINUE 

The running time for these loops was 1008 usec. Different vec- 

torization options were analyzed. One of them consisted of 

scattering the vectors that contain the nonzero values of Si 

and w to vectors of length of about 3200 and then performing 

the triad operation. This required 9514 clock cycles, or about 

190 vsec. The version adopted performs the multiplication of 

the vectors containing the nonzeros of Si and w first, a 

vector operation of length about 800, scatters that vector and 

performs the final subtraction in 7250 clock cycles or 145 psec, 

a gain of a factor of 7 from-the sequential code. 

Similar gains have been achieved in the other portions of 

the code vectorized in phase I. Unfortunately only a small 

portion of the total running time of the World Model is spent 

in the code vectorized in phase I. Thus the overall gain was 

relatively small. 

About 30% of the total running time of the World Model is 

spent on routines of the MA28 package in which the matrices Mi 

are factored (step 1.31, and solutions with many right hand 

sides computed (steps 2.2 and 4.2). At the present time we 

have completed only part of phase II, the vectorization of 

some of the inner loops in the MA28 set. 
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Due to the startup time in any vector operation, it is 

common practice to look into the length of the vectors involved 

in the operation to decide if the vectorization is really worth- 

while. In codes for sparse matrices, the vector length for an 

operation is usually the number of nonzero elements in a particular 

row or column, and thus varies within the code. The technique 

used in this case is to assess if the vector length is above 

a particular value and branch the process of that particular row 

or column to vector or sequential code. The running time of the 

code incorporating these features is 7.33 CPU seconds, cf. 

Table 1. 

Phase III, not yet implemented, consists of reconceptualizing 

the MA28 set. We will investigate the possibility of solving 

several right hand sides simultaneously, as well as other features 

like special treatment of right hand sides with few nonzero 

elements. 

Acknowledqment. I would like to thank Valdimir Roytman for his 
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The object of our project is to calculate the masses of the 
"elementary particles". This ambitious goal apparently is not 
possible using analytic methods or known approximation methods. 
However, it is probable that the power of a modern super computer 
will make at least part of the low lying mass spectrum accessible 
through direct numerical computation. Initial attempts by 
several groups at calculating this spectrum on small lattices of 
space time points have been very promising. Using new methods and 
super computers we have made considerable progress towards 
evaluating the mass spectrum on comparatively large lattices. 
Even so, we are examining regions of space just barely large 
enough to contain the particles being examined. Only more time 
and faster machines with increased storage will allow 
calculations of systems with guaranteed minimal boundary effects. 
In what follows we outline the ideas that currently go into this 
calculation 

While a long time ago it was believed that there were only a 
relatively small number of such objects (for example, protons, 
neutrons,electrons, photons and so on) it is now known that there 
is a virtual alphabet soup of so called elementary particles. A 
partial listing of these in terms of standardized short hand 
description is: T? @ b" DO 

ITz- ‘/ J 

but a fraction of the particles 
observed to date. fortunately, the properties of these particles 
suggest a pattern consistent with them in turn being made out of 
a "small' number of more elementary objects called quarks. To 
date, despite many attempts, there are no reliable reports of an 
isolated quark actually being observed. 
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Clearly, a theory is needed that explains the rich particle 
spectrum in terms of quarks and yet is compatible with quarks 
being unobservable if isolated from other matter. Further, from 
past experience with mathematical formulations, it is natural to 
insist that this description be reasonably simple and elegant. 
There is exactly one existing candidate for such a description. 
It is called Quantum Chromodynamics or Q.C.O. It is based on the 
very successful quantized description of the electromagnetic 
field interacting with electrons or P.E.O. Q.C.D. is more 
complicated than Q.E.D. because the several species of quarks 
needed to explain the group structure of the observed particles 
as well as the confinement of single quarks allows for a very 
rich mathematical structure. This structure is carried in a 
partition function like object which is the exponential of an 
action made of qlue fields (designated by the symbol A and quark 
fields designated by the symbolY/ . Here we have suppressed the 
space time dependence of these fields as well as the fact that 
each symbol is actually a vector with at least 12 components. The 
interaction described by the action is highly non-linear but any 
term contains either zero or two quark fields which somewhat 
simplifies the formulation. The primary content of the 
assumption that system examined be a quantum field theory is that 
at any given time every point in space has assigned to it 
independent quantized degrees of freedom associated with the qlue 
and quark fields. It is thus very natural to describe space time 
mathematically as a discrete lattice of points with separation a 
that approaches zero. 

The object UCi,j) defined as ~ 
2 -\ 

U(i,j) q 

p 3: A*.( i -4) 

plays a prJmary role in this theory. It has the property that 
UCi,j! = U(j,il. Further the U(i,j) are members of the qroup of 
unitary unimodular matrices SU(3). For these fields alone we have 
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the (effective1 partition function 

Here 

where the sum is taken over all independent square plaquettes and 

s& =’ 

We could stop with this form for the partition function and have 
more work to do than current available machine power will allow. 
However, to calculate the elementary particle spectrum (except 
for glueballs 1 we must include the quark fields in our action, 
The form used because of various symmetry and guage principles is 

Here K is a numerical parameter. The matrix B depends explicitly 
on the glue field A (of course leaving out gravity and weak 
interactionsisis then taken to be 

Physics is obtained by calculating the correlation functions or 
vacuum expectations of polynomials of the field (quark and glue) 
of the partition function formed from this action. The general 
problem that must be confronted is the evaluation using the 
appropriate group measure of the following type of integral. 

This has many variables . Since each U(i,jl is an SU(3) matrix it 
is specified by 12 numbers. If we study a hypercubic lattice with 
N points in each space-time direction we are dealing with the 
order of N**4*12*4 numbers just associated with the glue fields. 
The quark fields are characterized by (for our discussion) 12 
complex numbers at each lattice point. However, this is just the 
beginning. The quanJ-itiy,are.in fact not numbers! 
property that 
is 

cy’i j~fd=-@l !ihJ . 
They have the 

This anticommutivity property 
essential in order that the quarks describe objects with 

intrinsic half integral spin. Because the action S is quadratic 
only in quark fields it is possible (using very natural 
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definitions) to explicitly perform the integration over quark 
fields and leave the problem of evaluation of correlation 
functions expressible entirely in terms of integrals over glue 
fields. For example, if we examine the correlation function of 
four quark fields we have 

< F(4) yq/j\ ?'c) fJld)',= 

Note that l-K6 is a (N**4*12)**2 complex matrix. Det(l-KBI is 
more or less unspeakable for any reasonable size of N. Evaluation 
of the correlation function above is essential for determining 
meson masses (such as the pion) in this theory. Calculation of 
correlations of expectations of six quark fields is needed to 
evaluate properties of baryon fields (such as the proton). As a 
practical matter, numerical evaluation of six quark correlations 
is not much more difficult than four quark correlations. Clearly 
as N gets larger the problem gets more complicated. However, we 
are really only interested in the limit when N is very large 
since this corresponds to the infinite physical world. Indeed, we 
want to examine the limit were N becomes infinite and the lattice 
spacing a approaches zero. Under some circumstances it can be 
argued that neglecting the determinant should not make dramatic 
changes is the nature of the physical answers we obtain. For this 
discussion (and the particular project it is outlining) we chose 
to set the determinant to unity. We are then left with a class of 
integrals to evaluate which can be handled using Monte Carlo 
importance sampling methods in conceivable amounts of time for 
reasonably big lattices. Such systems have been studied 
extensively using Vax (780) computers on lattices with 6**3*14 
points. Using the C.S.U. Cyber 205 it is possible to examine far 
larger systems. Indeed we are in the process of examining (on 
several class 6 computers 1 systems with 10**3*24, 12**3*32 and 
20**3*50 lattice sites. 

After neglecting the determinant we are left with the basic 

We evaluate this numerically in two steps. First, we define a 
probability 
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Using Monte Carlo (Metropolis) methods we generate a sequence of 
lue configurations which are are distributed according to 

db )1 ’ iN t is important that these distributions be thermalized and ’ 
statistically independent’. By careful tuning of the way the 
Monte Carlo hits are made taking into consideration the nature of 
the group measure we can enormously speed up the decorrelation of 
consecutive lattice configurations. Indeed for most cases, it is 
not difficult to obtain a factor of four increase in speed of 
lattice generation over conventional methods through careful 
tuning. Even careful tuning of the physics of this problem does 
not give reasonable run times for large lattices unless full 
advantage is taken of the possibility of vectorizing the code. To 
do this efficiently we use red black methods of sweeping through 
lattice configurations. In addition, the memory requirements for 
large lattices rapidly become excessive so we use time slicing to 
control our memory allocations. We must do this since the demand 
paging algorithm on the 205 does not work efficiently with the 
codes which are naturally written for this problem. 

After a collection of independent lattices are generated we 
continue to evaluate the basic integral for the problem by 
evaluating the inverse of 1-KB for the guage configurations of 
each lattice. This is somewhat simplified since this inverse need 
be evaluated for only one base site-that is a fixed row of the 
matrix. However, it turns out that this inversion must be carried 
out for three or four different values of the parameter K. The 
method that has been most commonly used to invert the matrix 
employs a Gauss Seidel method. This is slow, taking almost an 
order of magnitude more time than the lattice generation. We have 
other methods under study which for the particular sys terns 
involved promise to be much faster. The Gauss Seidel method is 
used in a form first applied to this problem by Weingarten. We 
need to evaluate the form 

Here h is at a fixed lattice point but can vary through the 12 
values associated with the indices of the quark field at that 
point. This equation is now re-written in the form 

J is a parameter which can be tuned in order to obtain the 
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fastest convergence in the solution of this equation by iteration 
in f. In practice we code this procedure using red black ordering 
and time slicing to obtain vectorization and efficient memory 
management. 

After the matrix inversion is performed and the correlations 
are evaluated through weighting over the available lattices we 
must extract physical information from the output functions. The 
easiest information obtained is the masses of the particles 
described by this formalism. It is ,for example, a general 
property of the theory that we are dealing with that if we look 
at correlation functions depending on only two space time points 
and then sum over all spatial directions that the resulting time 
dependent functions depend only on sums of exponentials with the 
exponent linear in the masses of the appropriate particles and 
the time separations. It is an easy matter to fit to exponentials 
and extract numerical values for the masses. However to do this 
we must tune the parameters of the theory to match the physical 
mass spectrum at some value of the mass. In effect we have a two 
parameter fit for the entire mass spectrum. It is found however 
that the Gauss Seidel method fails to converge for the physical 
value of the pion mass and hence the need to do the extrapolation 
in K mentioned earlier. After this is done, it has been found 
that on smaller lattices a fairly accurate fit can be obtained to 
the relatively light particles. We expect to find much better 
fits for a large lattices where edge effects should ha ve a 
smaller effect on the calculated results. 
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ABSTRACT 

The full multigrid (PMG) method is applied to the two 
dimensional Poisson equation with Dirichlet boundary 
conditions. This has been chosen as a relatively simple 
test case for examining the efficiency of fully vectorizing 
of the multigrid method. Data structure and programing 
considerations and techniques are discussed, accompanied by 
performance details. 

April 1983 

1. INTRODUCTION 

The multigrid (NG) method has been shown to be a very efficient solver 
for discretlted PDE boundary-valve problems on serial (scalar) computers. 
However, it was not clear how well can the MG approach be adapted to 
execute effectively and efficiently on a vector processor, such as the CDC 
CYBER 205, where considerations other than operations-count may play an 
important role. The purpose of this paper is to. report our experience in 
implementing-an MG code on the CDC CYBEB 205. More specifically, the 
test-case considered is the two-dimensional Poisson equation with Dirlchlet 
boundary conditions. It will be assumed here that the reader has some 
familiarity with the philosophy, the motivation and the basic computational 
processes of MC as a fast solver. These processes are described in detail 
in a number of papers in these proceedings and [l] and 121 and references 
therein. The algorithm described in this paper is basically the same as 
the one given in the appendix of [3], whose description is detailed in 
sections 8.1 and 6.4 of [3]. Therefore, no full description of the MC 
algorithm is given here, but the relevant details are included in the 
appropriate context. The main emphasis of this paper is the vectoritation 
of these processes. Thus, we will not assume an in-depth knowledge or 
experience in applying HG solvers on a vector-processor type of a computer 
system. 

+ Presented at the International Multigrid Conference, Copper Mountain, 
Colorado, April 6-8, 1983. 
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Consequently, Section 2 contains a brief summary of architectural and 
conceptual features of a vector processor (specific to the CDC CYBER 205), 
which are relevant to this application, as veil as software tools available 
for a tight correlation between the hardvare and the computational process. 
Sections 3, 4 aad 5 are devoted to the description of the techniques used 
for vectorizing the procedures for the relaxation, the residual transfer 
calculatioa and the iaterpolatioa, respectively. The total full multigrid 
(EXG) process and various parameters and constraints are described in 
Section 6 interleaved with convergence and timings (performance) details. 
Finally, Section 7 contains some concluding remarks and comments regarding 
future plans. 

2, VECTOR PROCESSING 

The most significant difference between a traditional, serial computer 
and a vector processor is the ability of the latter to produce a whole 
array ("vector") of results upon issuing a single hardware instruction. 
The input to such a vector-instruction may be one or two vectors, one or 
two elements ("scalarsn), or a combination of the above. The instructions 
fall into two main categories- those that perform floating-point arithmetic 
(including square root, sum, dot-product, etc., as well as the basic 
operations), and those which may be collectively called "data-motion" 
instructions. These may be used, for example, to "gather" elements from 
one array into another using an arbitrary "index-list"; to "compress" or 
"expand" an array; to "merge" two arrays into one (with arbitrary 
Wiaterleaving" patterns), etc. 

The need for vector data-motion instructions becomes apparent when one 
considers the definition of a vector on a CDC CYBER 205. A vector is a set 
(array) of elements occupying consecutive locations in memory. It means, 
by the way, that a vector may be represented in FORT&W by a multi- 
dimensional array; i.e;, a two- or three-dimensional array may be used in 
computations as a single vector. The reason for this vector definition is 
that vhen performing vector operations on the CDC CYRER 205 the input 
elements are streamed directly from memory to the vector pipes and the 
output is streamed directly back into memory without any intermediate 
registers. 

The timing formula for completing a vector instruction contains two 
components. Oae is fixed, i.e., independent of the number of elements to 
be computed, and is called "start-up" time. In fact, it amounts to 
start-up and shut-down; it involves fetching the pointers to the input and 
output streams, aligning the arrays so as to eliminate bask conflicts and 
getting the first pair of operands to the functional unit (the pipe-line) 
and the last one back to memory. Typical time for the "start-up" component 
is 1 microsecond, or about 50 cycles (clock periods). The other component 
of the timing formula is the l'stream-time" which is proporatioaal to the 
number of elements in the vector. The result rate for a Z-pipe CDC CYRER 
205 for an add or multiply is 2 results per cycle. It is apparent now that 
in order to offset the "wasted" cycles of start- times it is beneficial 
to work with longer vectors. The system is better utilized if a single 
operation is performed on a long vector, rather thaa several operations to 
compute the same number of results. Given a vector length, N, one can 
evaluate the efficiency of the computation as the ratio between the number 
of cycles used to compute results and the total number of cycles the 
instruction has taken; i.e., (N/2)/(N/Z + 50). The maximum vector length 
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the CDC CYBER 205 hardware allows is 65,535 elements. The start-up time 
becomes quite negligible long before that. 

The vector "argumeats" for vector instructions are inserted through a 
coastruct called Descriptor. It is a quantity occupying 64 bits which 
fully describes a vector through two integer values: one is the virtual 
address of the starting location of the vector, the other is the number of 
elements, or the length, of the vector. An element may be a bit, a byte, a 
hslfrord (32-bits) or a word (64-bits) depending on the intructioa and the 
argument within the instruction. The CDC CYBER 205 FORTRAN provides the 
ability to declare variables of "type" Descriptor and Bit, as well as, 
extensions for assigning Descriptors to arrays and syntax for coding vector 
instructions without such an explicit associatioa. Bit arrays occupy 
exactly one bit per element, since the CDC OIBER 205 is bit-addressable. 
Bit vectors are used for creating a "mapping" between an array containing 
numerical values and a subset of it. A Bit vector may be used to control a 
vector floating-point operation (hence the term "control-vector" vhich is 
commonly used for a Bit vector) as follows: Take, for example, an add 
operation. All the elements of the two input arrays are added up, but only 
those result elements vkre the corresponding element of the control-vector 
is 1 v-ill be stored into the results vector. The other elements will not 
be modified. Alternatively, one may specify storing on zeros in the 
control-vector, and discarding results corresponding to a 1. 

Another cormnon use of bit vectors IS associated with some of the data- 
motioa instructions. T'wo examples will be given here: The "compress" 
instruction is tied to create a vector which is a subset of another vector. 
This operation has two input descriptors- one points to a numeric vector, 
the other to a bit vector. Whenever a 1 is encountered in the bit-vector 
the corresponding numeric element is moved to the next location of the 
output vector, i.e., the input array is "compressed" (the reverse process 
may be accomplished with an "expand" instruction). A single bit-vector may 
also be used to "merge" tvo numeric vectors into one. The bit-vector is 
scanned and vhen a 1 is encountered the next element of the first input 
vector is put into the next location of the output vector, vhen a iero is 
found in the bit-vector the aext element of the second input vector is 
moved into the next location of the output vector. The timing for both 
these instructions is dictated by the total length of the bit-vector. The 
result-rate is the same as that of vector arithmetic, i.e., on a two-pipe 
CYBER 205 it is two elemets per cycle (whether they are moved or not). It 
will be noted here that there are vector instructions for creating repeated 
bit patterns at a rate of 16 bits per cycle. 

Before concluding this section let us briefly mention the existence of 
aa "average" inStNCtion, which computes an average of two vectors, or 
adjacent means of a single vector, at the rate of a single floating-point 
operation. Oae can also "link", for example, an add and a multiply opera- 
tion, provided at least one of the three inputs is a "scalar,,, and perform 
the two operations as if it were only one. AU the instructions mentioned 
above are directly available through Fortran in-line function calls. 

3r BXLUXTION 

Nov ve are ready to examine the vays in which to utilize the tools and 
the vector processing concepts discussed in the previous section for 
vectorlzing the Hultigrid application. The success of such an exercise 
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hinges, to a large exteat, upon the efficieacy vith which the relaxatioa 
process may k accomplished. 

Discrctitatioa of the two-dimensational Poisson equation is achieved 
via the S-points differeaciag scheme. Thus' assuming geometric iattrpreta- 
&ion of the indices for the momeat, the set of the simultaneous equatioas 
to be solved may be written as 

ui,j-1 + “1-l,j + ui+i,j + ui,j+~ - 4 * ui,j - h2Fi,j 

vhcre u is the uaknova function, h Fs the InterPal betveen two grid points 
(in either directioa) and F is the right-hand side function. 1 varies from 
2 to HI-1 and j from 2 to N2-1, where Nl and N2 are the number of 
grid points along the two directions. 

One may vant to coasider the usual (lexicographic) Gauss-Seidel relaxa- 
tion procedure. This, however, vi11 be fn conflict vith vectorizatioa, as 
may be easily deduced. The Gauss-Seidel relaxation is characterized by the 
use of updated values as sooa as they become available. Vectorization means 
processing many such values in parallel, i.e., not waiting for the previous 
element to be updated. The obvious alternative is the red-black or 
checker-board ordering, vhere all the four neighbors of each point belong 
to the other "color". The convention used here is that the “color” of the 
grid points at the corners of the rectangle is red. The grid may accord- 
ingly be divided into tvo vectors and the relaxation performed in two 
stages : first, the values at red points are updated using “old” values, 
then the values at black points are updated using the “new” red values. 
Throughout the code the tvo vectors of the unknown functioa (and of the RHS 
functioa) are stored consecutively following each other, vhere inside each 
vector the values are stored column-vise an shown in Figure 1. This 
storage applies, of course, to all the grids used. 

Figure 1. Mapping of the Lexicographic into the “Red-Black,’ Ordering. The 
dotted une indicates the separationa of the grid polnts.intO two vectors. 

302 



The reader vi11 uotict that cht vectors thus created art not confined 
to one column, but txttnd over cht entire grid. It waa done in order to 
achieve longer vectors in lint with the desire expressed in Section 2. 
This, however, introduces cht hazard of ovtrvriting values residing on the 
boundary of the grid. To avoid this a bit control-vector was created for 
each grid, in a set-up routine, which concains zeros where boundary points 
exist and ones for interior points. We uat this "boundary control vector" 
to assure storing new values only inro the interior of ehe grid. 

The computation requires the sum of cha 4 neighbors for tach grid 
point. One can easily verify chat, using vtceor add operations this can be 
done with tvo opcracions only. One to add a vector into itself, with some 
offset (e.g.. Starr with tltmtnm 2 and 5 in Figure 1) and the second to 
add the rtsultane vector into itself (vith some other appropriate offset). 
The remaining calculation involves subtracting the result from the RHS 
values and multiply by a constant (being -0.25), vhich is accomplished aa a 
linked-triad operation; the result is ehta stored into place under the 
control of the boundary bit-vtccor. Thus, each of the two stages (two 
"colors") rtquiru thrtt floating-point optraciona using vector length of, 
approximarely, (N1 l N2)/2 elements long. In fact, some more savings 
in the compucaeions occur in the first relaxation sweep afttr moving to a 
coarser grid, since the sum of the "neighbors" need not bt computed for the 
first “color,” being known to bc zero. This is because we art btginning to 
compute a correction-function vhost first approximation is zero. The 
vector-operations count for this relaxation s~ttp Is thus reduced from 6 to 
4. Also, vhtn transferring a solution-function (noC "correction") to a 
finer grid, as part of the FMC process, an interpolation can be used which 
viJ.I. save cht relaxation on cht first "color" (see Sec. 5). 

In concLusion, the rtlaxacion process can obviously be done txtrtmtly 
fast on the CYEER 205. Timing details will be given in Section 6. 

4. FIMZ TU COAESE BESIDUALTBBNSFEB 

Rtsiduals have to be computed at those fine-grid points which also 
belong to the coarser grid. These residuals art directly transferred to 
the corresponding coarse-grid poines weighted by l/2 ("half injtcclon"; the 
factor of l/2 is motivated by the fact that eht fine-grid residual is zero 
at black fine-grid points, htnct the ocher residuals should be multiplied 
by l/2 to rcprtstne the correct average). Set Figure 2. 

The computation involves four floating-point operations (tvo of thtm 
art linktd triads) for evaluating the residuals of the red points on the 
fine-rid and multiplying them by l/2. This, however, does not conclude 
the procedure. At this stage ve need to apply the "comprtsa" operation 
three times aa follow: using a prt-dtfintd bit-vector ve extract the 
rtaidual values corresponding to coarse-grid points, i.t, belonging to 
oddaumbtrtd columns of the red scctioa of-the finer grid. (Note that ve 
have throwa away b&f the calculattd rtsidnala. This procedure is both 
simpler and a little faattr than having to perform all the comprasa 
operationa needed for computing only the required rtsidurls.) Now, as is 
evident from Figure 2, we have all the dtrirtd values for the coarser grid 
rtortd ia ltxlcographic order. To separate them into “red” and "black" 
sections the I'compreas" instruction is applied Mce (once for each color) 
using a prc-dtfintd “picket fence" bit-tcfor. The procedure as described 
here products opeimum performance even though somt redundant operation8 are 
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performed. The alternatives are to perform different (more "costly") data 
motions or to operate on much shorter vectors. Finally, another vtccor 
operation is txtcuttd to zero out the unknown functioa of the coarser grid 
in preparation for evaluating the correction function. In total the proca- 
dure rtquirts 8 vector "start-ups" associated uith 5 operations of approxl- 
mate length of (Nl * N2)/2, and 3 operations of length (Nl l N2)/4, vhtre 
Nl and N2 are the dimcnsioas of the finer grid. 

. I . 

Figure 2. Transfer tu a Coarser Grid: The residual calculation. Each 
'90xB' contains the fine grid points involved in the computation .for the 
corresponding coarse grid point. 

5. INEBPOLATION 

Interpolation, in the context of this paper, is the process by which we 
transfer from a given grid to a finer one. Two types of inttrpolacions are 
employtd here: Type I interpolation is used vhtn a correcrioa is 'interpo- 
laced from the coarser grfd and added to the finer grid. The Type II inter- 
polation is used to compute a first approximatiou on the finer grid, based 
on existing values on the coarser grid. The use of the red-black ordering, 
combined with the fact that a relaxation always follows an interpolation, 
impliu that only one color of the finer-grid points need to be interpolated 
(the other color vlll be computed by a rtlaxacioo pass on that color). 

Type I interpolation is bilintar employing points at shown in Figure 3. 
Only interior black points oa the finer grid need to bt evaluated. Due to 
the rtquirtd averaging of the coarse grid values it is coavtnitnt to first 
merge ehe red and black points of this grid wing the "picker-fence" bit 
vector to produce the ltxicographic ordering. Next, tvo averages art 
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computed. The average over the coarse grid, vhere the two input vectors 
are offset by a column, viU produce the quantities to be added into black 
points OP evenumbered columos on the fine grid. A second average, vhere 
the offset between the tvo vectors is one elemnt, is executed for fine 
grid black points corresponding to odd numbered columns. This last opera- 
tion produces redundant values (at the end of each coarse grid column) 
vhich are throwa away using the "compreso" 
wedefined bit vector. 

operation with an appropriate 
The two resultant coarse grid "average-vectors" 

are then interleaved, using a “merge” instruction, under the control of the 
bit vector vhere the "l‘s" and "0's" correspond to odd and even columns, 
respectively. Pixklly, the urged values are added to “black" points of 
the finer grid under the control of the “boundarf bit-vector which inhibits 
storing values into the boundary of the grid. The whole procedure amounts 
to 3 floating-point operationa, 2 "merges" and 1 "compresu." The 6 vector 
operations may also be divided into 4 operations of length (N1 l N2)/4 
and 2 operations of length (Nl l N2)/2, approatelp. 
are the dimensions of the finer grid.) 

(Nl and N2 

Figure 3. Type I Interpolation. It shovs vhere averages of coarse grid 
values are added into "Black" points cm the fine grid. 

Type II interpolatioa la a 4th order one, described, for example, in 
secrion 6.4 of [31. It produces nev red unknowa-function values on a finer 
grid using rotated difference operators. The values at the black points 
are produced by half a relaxation sweep, i.e., a relaxation paas over the 
fine-grid black points. (This pass may be regarded aa part of the interpo- 
lation process. In the timing tables below, however, the time spent in 
this pess is counted as relaxation time.) The process is described picto- 
rially in Figure 4. All the interior coarse grid values are moved to occupy 
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the corresponding fine-grid points. The relaxation operator is applied to 
these vslues in order to compute interior red points of the even-n-bared 
colomns on the fine grid. The only difference between the relaxation here 
spd the one described in Section 3 is that the operator is the “rotated” 
S-point Lap&clan and the interval ktween each point and its neighbors is 
changed from h to @h. The EES function values rsquircd for this relaxa- 
tion are avsilable from the fine grid RJlS array (a "compress" operation is 
performad to retrieve even-nwsbersd calm values). The whole procedure, 
thus, requires 2 "merges" (one for merging red-black valuss of the coarse 
grid, the other for merging the "trsnsferred" and “relaxed” values of the 

red fine grid points); 3 floating-point operations for the relaxation; 2 
“C~l3!88” operations (one for throwing away redundant, incorrect averages 
and one for collecting REfS values); and, finally, one vector-move operation 
under the control of the boundary bit-vector for storing the aefy red fine 
grid values into place. Five out of the 8 vector operations have length of 
about (N1 * N2)/4, the other 3 are associated with a length of (Nl l N2)/2; 
Nl and N2 being the dimensions of the finer grid. 

I 

0 

x 

0 

* 

0 

x 

0 

* 

0 

x 

0 

X. 

I’ x 6L* 
Figure 4. Type II Iatcrpolation. Coarse grid values are transferred to 
odd numbered columns on the fine grid. These values are wed to compute, 
via ths relaxation operator, the even aumbered column values. 

6. PEEFOBllANcE AND COHYEBCENCE 

The bssic computational procedures, studied in the previous three 
set eons, can now bs linked together to form the FXG process. Figure 5 is 
a scksmatic description of the sequence of events vhich leads to an 
approximate solution of the difference equations. The finest grid (where a 
solution is sought) is assigned the highest level number. The example 
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depicted in Figure 5 descrfbes ap Fnc tith 5 levels vhere the process 
stats at level mmber 2. This may not be aecessary, as vill bs argued 
Mow, and onm may visurLite the FMG starting at a higher level sfmply by 
deleting the left-hand-side of the figure. This starting level is a 
parameter controlled by the user. The F?fG shown la Figure 5 la composed of 
vhrt is knowll as ‘7” cycles. In each "P' cycle one performs relaxation- 
rsslduel calculation-relaxation . ..uutil reaching the coarsest grid, then a 
aquasme of interpolation7e3.axatiou is uscuted. The transfer from one 
‘YP cycle to tha next la achieved da Typm II interpolation. More 
sFecifi&y, thr FMC m Fnplemated my be chamctrrfzed as 
F?fG (H,L,Xl,X2,&3,B4), vhsre n is the nuder of’levels and L is the 
sturting level; El and B2 indiute the number of rslpr,tions before svinz 
to a coarser grid and before moping to a finer grid, respectively. 
R4 have the ssme maning and apply to the last V' cycle only. All these 
parmeters are provided by the user* The use rsay also specify the rlza of 
thr coarsest grid to be rued. It mast heve an even number of internals in 
ssch directioa. (In our experiments the coarsest grid had 3 by 3 points; 
1.8. * 2 by 2 InterPals.) The user also specifies the mesh size h (assumed 
to be the same in both directions) on the finest grfd. 

4 

3 

2 

1 

l 

Figure 5. The Full MuLtigrid (FMG) Process:, FMG (5, 2, U, B2, 83, B4). 
The circles indicate the number of relaxations performed at a given level. 
Douuwards orTow signifies residu calculation bemean rsJ.alations, upwards 
arrow fmplies fnterpolatlon. (Uhen a level is encountered for the first 
time the interpolation is of Type II, indicated by a double line above, 
otherwise it is of Type I.) When level 1 contafns only one lntarior point 
only one relsxation sweep is perfowd thereon , regardlass of the values 
given to El and 83. 

The process described above is deterministic, ia the sense that the 
user defines the steps to be tShSI, bawd on prior knowledge of the 
characteristics aad smoothness of the functioa to k solved. It in also 
kaoue that if L-2 the FUG guarantees a solutioa error smaller than the 
tmmation emor (introduced by the differencing scheme), for L2 sons. 
for etnmple. !& have &lowed, however, as a usemption, the evsluation of 
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the Ll, L2 and L,noms of the residual at var%cms points. Testing was 
done for problems vhich have solution of the Saxa: 

c * cos (k (x + 23)) 

with and without the addition of a 6th degree polyaomial which vanishes on 
the boundary. In all these uses the FHG process vith L=2 indeed produced 
a solution with an algebraic error (error in solving the difference 
equations) much smsller than the truncation ermr, in the L1, L2 and L, 
aorms . 

Ooly "V(2,l)" cycles were used for the results and tinrings to be quoted 
here. This turns out to bs the optima cmshimtion for the Poisson 
equation. More relaxstions at esch stage do wt improve the final result 
l oough to justify the additional vork, less tiurtions may cause deteri- 
oration in the accuracy. (If full weighting were used instead of half 
injection, the optimal cycle would be "V(l,l)". This would, however, be 
less efficient than the present procedure since full weighting is substan- 
tially more costly than a relaxation sweep.) In the performance details 
vhich follow, ve vill give results for various Prlues of L since, in many 
cases, in particular vhen a reasonable initial guess is available, high 
values of L, even L-H, may provide sufficient accuracy. This is, in 
particular, the situatioo when the PO~SSOII solver is used within some 
external iterative process, or at each time step of an evolution problem. 

&fore dig-sing the timings ve should briefly mention SOW set-up 
procedures. A routine is provided for re-orderiag the initial array (from 
l&cographic to red-black) if it is aot so structured yet. This is done 
through two "picket-fence compress" operations and amounts to 0.185 msecs. 
for a 65 by 65 grid, for example. Putting ths solution back into lexico- 
graphic order is done with a single "merge" instruction and takes half as 
long. Next, there ig a routine vhich defines vsrious pointers and lengths 
for all the grids used, as well as the bit-vectors discussed earlier. For 
many applications, vhere the solver is used mny times vith the S+W? grid 
definition, this v-ill be done only once. It will aot, therefore, be 
included in the total times quoted below (it takes 0.29 msecs. for a 65 by 
65 grid with 6 levels). The last set-up routine is included in the timings 
fnfonnation. this routine defines the boundary velues and the EHS for all 
the levels bet-en L and M-1. It also sets the initial guess on the level 
L grid. 

The code ves mn with grid sizes of 33 by 33, 65 by 65 and 129 by 129 
(H = 5, 6 and 7, respectively) with L-2,...,& Total execution times are 
given in Table 1. It shows, for example, that a 65 by 65 grid may be 
solved in as little as 1 msec., and, at most, in 2 msecs. By examining the 
procssalng time per grid-point one can see the effect of vector-instructions 
start-up times or the dependence of the perfonnrnce upon vector lengths. 
On a serial processor the time per element wuld have been, approximately, 
a constant across each line in Table 1. We obseme, however, that the 
processing of the 129 by 129 grid is roughly twice as efficient as that of 
the 33 by 33 grid. This is due to the fact that even though the aumber of 
vector “start’~ps” remains nearly the same (across a given line), the 
number of elements solved for has increased by a factor of 16. Hence, more 
time is spent doing useful arithmetic in the vector pipelines. 

308 



TABLE 1. Execution times for various paramcccrs of the FMG. The entries 
on the left are total times in milliseconds. The entries enclosed in 
parenthesis are the execution times in microseconds per grid-point (only 
interior points are taken into account). 

I H-L+1 I 33by33 I 
(HG 5) 

65 by 65 1 
(X ; 6) 

129 by 129 1 
1 (.No. of "V"'s) 1 I (H ; 7) I 
I 1 1 0.360 (0.37) I 1.006 (0.25) I 3.293 (0.20) I 
I 2 1 0.604 (0.63) I 1.552 (0.39) 1 4.910 (0.30) i 
I 3 1 0.729 (0.76) ' 1.810 (0.46) I 5.440 (0.34) I 
I 4 1 0.801 (0.83) 1 1.947 (0.49) I 5.687 (0.35) I 
I 5 I I 2.009 (0.51) 1 5.807 (0.36) 1 
I 6 5.875 I I 1 (0.36) 1 

Tables 2 and 3 present a more detailed analysis of timings for a single 
example, namely for solving a 129 by 129 grid with 7 levels and starting at 
level 2. The entries in Table 2 show timings in msecs. by level and by 
procedure. One notices that the total time spent performing relaxations is 
less than 50X of the total time. This is to be compared against the go-902 
of total time used for relaxations on a serial processor. This is, of 
course, due to the fact chat the vectorized relaxation is extremely 
efficient and does aot fnvolve any data-motion operations. The interpola- 
tion and the residual calculations, though fully vectorired. involve some 
data-notion operatioas, and, therefore, consume a relatively higher propor- 
tion of the execution time than they would on a "scalar" computer. Another 
obsemation vorth mentioning is that the contributions to all the procedures 
arising from levels 2 to 4 is roughly the same, even though the amount of 
vork differs by a factor of 4 bctvetn levels. This is a consequence of the 
relatively short vectors vhich characterize the coarser grids. Xt also 
explains the larger weight the coarse grids have in the vectorized code 
compared to that of the serial process. 

TABLE 2. kecution times in milliseconds for solving a 129 by 129 grid 
with starting level 2. Breakdown by procedure and by level. For the 
residual calculation and the interpolations the entry in the table 
corresporxis to the f her grid involved. 

I I Grid I I Residual l I I 
I I Initiali- I Relaxa- I Calcula- I Interpolation I I 

Level I 
I 1 (3x3) 

ration I tion I tion I Type 1 1 Type II 1 Total I 
I 1 0.010 I I 1 0.010 I 

I 2 (5x5) I 0.011 I 0.179 I 0.014 1 0.011 I I 0.215 I 
I 3 (9x9) I 0.015 1 0.160 l 0.060 1 0.049 1 0.024 1 0.308 1 
I 4 (17x17) 1 0.034 I 0.189 I 0.068 I 0.053 1 0.028 I 0.372 1 
1 5 (33x33) I 0.106 I 0.320 1 0.117 1 0.095 1 0.053 1 0.691 I 
1 6 (65x65) I 0.388 1 0.690 1 0.261 I 0.194 I 0.141 I 1.674 I 
I 7 (129x129) I I 1.257 l 0.497 1 0.357 1 0.494 I 2.605 1 
I I I I I I I I 
I TOTAL I 0.554 I 2.805 1 1.017 I 0.759 I 0.740 I 5.875 1 
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In Table 3 we have measured the time in microseconds for each time a 
procedure is executed for a given level, accompanied by the number of times 
the procedure is performed. It should be noted here that when level 1 is 
involved in any of the procedures a scalar code was used, since it has only 
one interior point. Again, the effect of vector lengths is such that the 
level 3 relaxation is comparable to that of level 2, for example. Only 
when we get to the finest grids do we observe timing ratios which 
correspond to the ratios of the number of elements processed. The reader 
should be reminded that the average time of the relaxation procedure is aot 
fully accurate, since some relaxations are not quite "complete" as was 
explained ia Section 3 (i.e., after Type II interpolation and after 
residual calculation). The residual calculatim takes longer than the 
relaxation (in contrast to the scalar case), which is understandable from 
the discussion in Sections 3 and 4. 

TABLE 3. Procedure-calls count sad average times ia microseconds per 
call. Breakdowa by levels for the 129 by 129 problem with starting level 2. 

Note: Some of the relaxations are not "complete." (See Section 3) 

I I I I Interpolation I 
I l.Belaxation I Residual 1 Type I Type II: I 
I LeVd 1 No. I Time I No. I Time I No. I Time NO-!- Time I 
I 1 (3x3) I 6 I 1.7 I 
I 2 (5x5) I 18 I 9.9 I 6 

1 
2.3 

; 
6 

1 I I I 
1.8 1 I I 

I 3 (9x9) I 15 I 10.7 l 5 l 12.0 I 5 l 9.8 1 1 I 24.0 1 
1 4 (17x17) I 12 I 15.8 I 4 I 17.0 l 4 l 13.3 l 1 I 28.0 1 
1 5 (33x33) I9 I 35.6 'I 3 I 39.0 I 3 I 31.7 l 1 l 53.0 l 
1 6 (65x65) I 6 1 115.0 1 2 1 130.5 1 2 I 97.0 1 1 I 141.0 1 
1 7 (129x129) 1 3 1 419.0 1 1 1 497.0 I 1 I 357.0 l 1 1 494.0 1 

To conclude the performance discussion we vill meation that the vector- 
ired code executes about 15 times faster than the scalar version on the CDC 
CXBEB 205, and roughly 500 times faster than the CDC CYBEB 720. 

The lesson from what was said above is that relaxations are relatively 
"cheap" in terms of execution times , and computations on the coarser grids 
are realtively "costly" (compared with the ratios found on scalar 
processors). 

7. CONCLUXNG 9EMARKS 

One important le'ssoa, knowa very well to those involved ia vector 
processing, is that it demands careful data structuring and analysis of the 
"mapping" between the data and the operations to be performed, if the 
vector capabilities of the processor are to be efficiently utilized. We 
have also demonstrated that the traditional operations-count as a measure 
of processing time is not sufficient. On a vector processor one has to 
take into account the number of vector operations (or the lengths of the 
vectors) and the data-motion operations (which occur on a serial processor, 
too, but are often ignored when algorithms are evaluated). The result of 
the above is that one may have to re-examine the various parameters of the 
algori4hm vhen migrating the Multigrid application from a serial to a 
vector processor. This aspect requires further investigation. 
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Ve feel that the experiment with the model-case studied in this paper 
was successful and the performance achieved very pleasing. It certainly 
varrants continuation uork. Some obvious areas we intend to engage in are 
the following: Extending the application to three-dimensional Poisson 
cqua tioas ; code a similar application to cater for the, more general, 
Diffusion equation; and implement "full-weighting" residual calculation and 
cubic interpolation. In addition one may, of course, generalize this uopk 
Ln many directions. t¶ore general boundary conditions (Nemarm, etc.) can 
be implemented. The solucioa of non-linear problem8 (using PA8 multigrid 
version) and systems of equations can also be vectorlted in a similar 
fashion. Yore difficult, but potentially important, is the exteneioo to 
general drnnains, which vfll require a lot of thought about data structures 
and data motion. As a last comment, it vlll k noted that all the timings 
quoted here were achieved using 64-bit arithmetic. On the CDC CYBER 205 
one can we 32-bit arithmetic as veil, and, thus, double the result rate 
for vector operations Mile halving the memory requirements. For the 
purpose of obtaining albebraic errors smeller than truncation errors in 
solving second order equations, the 32-bit arithmetic is indeed enough. We 
intend to examdne this option. 

[I.1 A. Baadt, 'Wa.lti-level adaptive solutions to boundarp-p8lue 
problems", Math. Camp. 31, (1977), 333-390. 

12.1 V. Heckbusch and U. Trottcnberg, cd., “Multigrid Methoda", 
Proceedings of a Conference (Koln-Porz, Nov. 1981), SpringerVerlag, 
1982. 

13.1 K. Stuben, K. Trottenberg, "Multigrid Methods: Fundamental 
algoritbme, model problem aa~lyris and applications". 
I-176. 

In [21 pp. 

311 





THE VECTORIZATION OF A RAY TRACING 
PROGRAM FOR IMAGE GENERATION 

DAVID J. PLUNKETT, 
JOSEPH M. CYCHOSZ 

AND 
MICHAEL J. BAILEY 

PURDUE UNIVERSITY CADLAB 

WEST LAFAYETTE, INDIANA 





TEE VECTORIZATION OF A RAY TRACING PROGRAM 
FOR IMAGE GENERATION 

David J. Plunkett’ 

Joseph M. Cychosz 

Michael J. Bailey 

Purdue University CADLAB 

ABSTRACT 

Ray tracing is a widely used method for producing realistic computer-generated images. 
Ray tracing involves firing an imaginary ray from a view point, through a point on an image 
plane, into a three dimensional scene. The intersection of the ray with the objects in the scene 
determines what is visible at that point on the image plane. This process must be repeated 
many times, once for each point (commonly called a pixel) in the image plane. A typical image 
contains more than a million pixels making this process computationally expensive. A tradi- 
tional ray tracing program processes one ray at a time. In such a serial approach, as much as 
ninety percent of the execution time is spent computing the intersection of a ray with the sur- 
faces in the scene. With the CYBER 205, many rays can be intersected with all the bodies in 
the scene with a single series of vector operations. Vectorization of this intersection process 
results in large decremes in computation time. 

The CADLAB’s interest in ray tracing stems from the need to produce realistic images of 
mechanical parts. A high quality image of a part during the design process can increase the 
productivity of the designer by helping him visualize the results of his work. To be useful in 
the design process, these images must be produced in a reasonable amount of time. This discus- 
sion will explain how the ray tracing process was vectorized and gives examples of the images 
obtained. 
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GEOMETRIC MODELING AND MECHANICAL DESIGN 

In mechanical design, there are two broad reasons for using the computer: (1) predict 

behavior, and (2) visualize. Behavior that needs to be predicted includes every test that one 

would normally perform if given a physical prototype of the design: weight, center of gravity, 

strength, movement, dearaaces, etc. This is why a computer model of a part is often referred 

to as a “virtual prototype.” Visualization is, in effect, another form of behavior prediction. In 

this case, knowing the actual appearance of a proposed design is a valuable aid in conceptualiz- 

ing. 

In order to feed information into visualization and analysis routines, a gcomefric model of the 

design must 6rst be created. In the early days of computer aided engineering, a wireframe data- 

base wa5 used to model the part shape. This w= deemed inadequate, because the wireframe 

could only model a part’s edges, not its rolid voltme. 

One of the methods by which we model part shapes in the CADLAB is with a newer tech- 

nique called Solid Modeling. A solid modeling database has suflicient geometric information to 

completely and unambiguously de& the shape of a three dimensional object. One method of 

buihiing a solid model database is with a technique called Constructive Solid Geometry, or CSG. 

A CSG geometric creation sequence is characterized by applying booiean operators (union, 

diflerence, intersection) to groups of primitive shapes (boxes, cylinders, cones, etc). Complex 

designs may be created in this manner, with the results being sufIicient to drive visualization 

and other analyses. The remainder of this report will discuss the use of the CYBER 205 to pro- 

duce image information in order to view an object constructed using CSG operations. 
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INTERSECTIONS OF RAYS WITH A PRIMITIVE 

One nice side effect of using a CSG representation is that the resulting object can easily be 

displayed using ray tracing. Ray tracing involves firing an imaginary ray from a view point, 

through a point on an image plane, into a three dimensional scene. It is not mathematically 

feasible to determine the visible surface of an entire CSG object in a single computation. How- 

ever, it is fairly easy to determine the intersection of a ray with each of the individual primitives 

which make up a CSG object. Then, a little more calculation produces the point along that ray 

which is visible. If one ray is fIred through every pixel in the image plane, an image of the 

object is obtained (see Figure 1). 

c Y 

view 
point 

-X 

J 2 
Figure 1. The Image Environment. 
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The typical (serial) ray tracing program must: 

l Intersect all primitives in the scene with one ray. 

l Traverse the CSG database to determine which primitive intersection is the visible surface 

for that ray. 

l Determine the surface intensity using the surface relationship between the surface normal, 

the eye position, and the position(s) of the light source(s). 

This is the visible surface algorithm. It is repeated at every picture element (pixel) in the image 

plane. 

The intersection of the ray with the primitives is by far the most time consuming part of the 

visible surface algorithm. However, it is also the easiest part of the algorithm to vectorize. 

Instead of just finding the intersection of one ray with a primitive, a queue of rays is built (seri- 

ally as in a traditional ray tracing program). Then the intersections of each primitive with 

every ray in the queue is found in a series of vector operations. Table I gives computation 

times for 100,000 rays intersecting a sphere and a cylinder primitive. For the vector results in 

this table, a queue length of 2000 rays was used. 

FINDING A RAY’S VISIBLE SURFACE 

The above timings are only for the lowest level in the visible surface algorithm. After all the 

intersections are found, the CSG database must. still be traversed to determine which primitive 

intersection is the visible surface for that ray. This constrains the length of the ray queue, since 

it implies that ail the ray intersection information must be stored (after the intersection calcula- 

tion) and then retrieved (for the visible surface calculation). If the ray queue is too long, the 

time spent page faulting will be enormous. For this reason, the ray queue in our application is 
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TABLE 1. 

CPU Timas* 

Primitive Cyber 205 
I 

Cyber 205 Cyber 720 
Scalar Vector 

sphere .944 .0279 13.1 

cylinder 2.729 .1614 51.48 

Steiner 11.157 1.047 210.0 

Speedup’ 

Primitive SE zzi 
20s rector 

s72, 

sphere 33.81 409 

cylinder 16.91 318 

Steiner 10.67 206 

2 CPU times are in seconds 

CPU time P2 
3 spetdup = Sag = cpU time p 

1 
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approximately 2000 rays. The visible surface algorithm has not yet been vectorized. However, 

it is apparent that at least parts of this process are vectorizable. 

One of the reMsons ray tracing has been so widely accepted is that it can show very realistic 

image synthesis effects. Shadows are perhaps the easiest extension to the algorithms described 

above. To determine if a visible surface is in a shadow, one ray must be 6red toward each light 

source from the visible surface. If this ray hits a solid object before it encounters the light 

source, the visible surface is in a shadow. Reflection can be shown by spawning another ray 

from each surface such that the angle of reflection equals the angle of incidence. Transparency 

and refraction can be modeled if a refraction ray is spawned after a hit on a solid, transparent 

object. What should be clear from these special effects is that the extra rays to be &ed do not 

come in a predictable, vectorizabie progression. However, after a serial section of code has 

determined that another ray must be tied, this ray can be placed in the queue and intersected 

using vector code when the queue is full. 

SURFACE PATCHES 

Surface patches are used in computer aided design to sculpt the surface of a part that would 

be difficult or impossible to mode! using conventional primitives such as cylinders and boxes. 

Hence, surface patches play an important role in the design process of parts such as air foils and 

car bodies. At the CADLAB we are currently investigating the uses of Steiner surfaces a3 a 

sculpting device. Ray tracing is then used to visualize the resulting sculpted surface. 

A Steiner surface is a bi-quadratic surface. This means that computing the intersection of a 

ray with a Steiner surface requires the solving of a quartic equation. Approximately 65 precent 
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of the computation time for this intersection calculation involve3 the solving of the quartic equa- 

tion while the rest is attributed to the determination of the coefficients for the quartic equation. 

The determination of the polynomia! coefficients is a straight forward process and is easiiy vec- 

torized. Vectorixing the process by which a queue of rays may be intersected with a Steiner sur- 

face requires the vectorization of the root solver used for solving the quartic. For our applica- 

tion we are only interested in the 6rst positive real root closest to zero. Table 1 shows the 

results of vectorizing the Steiner intersection process. 

To determine the roots of the quartic polynomial the slope and curvature function3 (i.e. the 

Erst and second derivatives) are examined to determine the intervals over which a possible solu- 

tion exists. Modified Regu!a Falsi is then used to determine the roots within these intervals. 

Once a root is found it is evaluated to see if the root is acceptable. 

The vector&d version of the root solver Ends the roots of a series of quartic polynomials, 

each polynomial corresponding to a ray in the ray queue. The roots for all the polynomials 

must be found before the process can complete. Unlike the scalar version, it is most likely that 

all four root3 will have to be determined and evaluated a.3 it is likely that at least one ray will 

not intersect the surface. This process is sped up by ensuring that a sign change does not occur 

before using the Fa!si method to determine subsequent roots once an acceptable root has been 

found for a particular polynomial. Gather-scatters are then used to compress the vector3 used 

during these iterative processes. Convergence occurs when al! of the root3 being found converge 

within the specified tolerance. 

The quartic root solver can be used for a variety of applications. One extension to the ray 

tracing program will be the inclusion of tori and other elliptical surface3 ;LS primitives. These 

primitives will also require solving a fourth order equation to determine the intersection of a ray 

with their surface. 
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OTHER APPLICATIONS 

Another application of ray tracing at Purdue is radiant heat transfer analysis of 6nned 

Tubes (MAXW831.4 Rays are fired to determine the radiation shape factor of one or more Enned 

tubes. Unlike the visualization of a CSG object, maximum length vector operations may be 

used since it is only of interest knowing that the ray strikes the tube and not where on the 

tube. The computational requirements of this application have been reduced from 6UO seconds 

on a CDC 6600 down to 3 seconds on the CYBER 205. 

CONCLUSION 

Ray tracing is, in genera!, a parallel algorithm. This paper examined how the parallel algorithm 

can be modified for use on a vector computer. In design work, the speed with which results are 

available is often critical. Vectorication of ray tracing programs promises shorter execution 

times. This will benefit not only visualization, but also such diverse areaS as heat transfer, mass 

properties analysis, and nuclear engineering. 

4 w83] Maxwell, CM., “Mathematical Modclling of a Gas Fired Swimming Pool Water Heater”, Ph.D. 
Thesis, Purdue University, in preparation. 

322 



323 





A KOSLOFF/BASAL METHOD, 3D MIGRATION PROGRAM 
IMPLEMENTED ON THE CYBER 205 SUPERCOMPUTER 

L. D. PYLE 
DEPARTMENT OF COMPUTER SCIENCE 

UNIVERSITY OF HOUSTON 
HOUSTON, TEXAS 

S. R. WHEAT 
BELL TELEPHONE LABORATORIES 

NAPERVILLE, ILLINOIS 





Title: A Kosloff/Basal Method, 30 Migration Proqram Implemented 
on the CYBER 205 Supercomputer 

Authors: L.D. Pyle* and S.R. Wheat** 

ABSTRACT: 

Conventional finite-difference migration has relied on approximations to 
the acoustic wave equation which allow energy to propagate only downwards. 
Although generally reliable, such approaches usually do not yield an accurate 
migration for geological structures with strong lateral velocity variations or 
)./ith steeply dipping reflectors. An earlier study by D. Kosloff and E. Baysal 

the Full Acoustic Wave Equation) examined an alternative approach 
based on the full acoustic wave equation. The 2D, Fourier-type algorithm which 
was developed was tested by Kosloff and Baysal against synthetic data and against 
physical model data. The results indicated that such a scheme gives accurate 
inigration for cdmplicated structures. This paper describes the development and 
testing of a yectorized, 30 migration program for the CYBER 205 using the 
Kosloff/Baysal method. The program can accept as many as 65,536 zero-offset 
(stacked) traces. In order to efficiently process a data cube of such magnitude, 
(65 million data values), data motion aspects of the program employ the CDC 
supplied bubroutine SLICE4, which provides high speed input/output, taking advan- 
tage of the efficiency of the system-provided subroutines Q7BUFIN and Q7BUFOUT 
and of the parallelism achievable by distributing data transfer over four differ- 
ent input/output channels. The results obtained are consistent with those of 
I<osloff and Baysal. Additional investigations, based upon the work reported in 
this paper, are in prcgress. 
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1.1 

In an attempt to develop a migration technique that did not have 

the faults of conventional finite-difference migration techniques, 

Kosloff and Baysal introduced a migration technique based on the full 

acoustic wave equation ill. While conventioml finite-difference 

techniques used an approximation to the wave equation, they allowed 

energy to propagate only dmnwards. Although these techniques yield 

reliable :yigration in most cases, they usually do not yield an accurate 

PigratiOn for geologicdl structures with strong lateral velocity 

variations or with steeply dipping reflectors. The results of the 

migration technique developed by Kosloff and Baysal shcwed their 

technique to be able to accurately migrate these canplicated geological 

structures. Furthermore, they found that there was no need to invoke 

complicated schemes in an attempt to correct the deficiencies of 

one-way equations 121. 
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ONOF'lS-IElZZ%NT.SJJ,IQX 

Although the technique developd by Kosloff and Baysal provides an 

excellent migration algorithm, it still is a two-dimensional migration 

technique. The object of this research was to extend the 2D migration 

technique of Kosloff and Baysal into a 3D migration technique that 

would migrate a cube of 65,536 (or less) traces, each of length 1,024 

samples. This goal miately imposed several problems that were mch 

greater than extending the numerical methods of Kosloff and Baysal. Of 

these problems, execution time and data motion were the most 

significant. Although the 2D migration of Kosloff and Baysal was 

implement& on a Digital Equipnent Corporation VAX-11/780 incorprating 

a ETS-100 array processor, with favorable processing time, it was 

observed that this hardware was much too ~~11 to expect it to handle 

the 3D technique in a reasonable amount of time. Consequently, for its 

high rate of computation, the CDC CiBER 205 located at Colorado State 

University (CSU) was chosen to be the target machine. In Chapters II, 

III and IV, the following aspects of the 3D migration technique are 

developed: (1) the numerical methods involved: (2) the major features 

of the program implementing the 3D migration technique; and (3) the 

results of numerical tests of the program. 
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Conventional finittiifference migration has relied on 

approximations to the wave equation which allow energy to propgate 

only tiards. Although generally reliable, such equations usually do 

not give accurate migration for structures with strong lateral velocity 

variations or with steep dips. The migration technique presented here 

is a three-dimensional extension of a two-dimensional migration 

technique developad earlier by Kosloff and Baysal [31. The migration 

technique presented here, referred to in this paper as the KEF 

migration technique (for Kosloff/Baysal Fourier type>, is based on the 

full acoustic wave equation, (2.1). 
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2.2 INHfi 

It is assmed that input to the KBF program consists of a “cut@ 

of terosffset traces in (k,y,z=O,t) space. ‘I% KEF technique 

presented here is designed to handle Nx + Ny such traces correspctlding 

to?& l ~uniformlyqaced pints in the x and theydirectim. The 

bn@nentatim discussed is designed so that the following must be truer 

. 
32 <- Nx <- 256 and Nx - 2l for sme integer i 

32 <- Ny <- 256 and Ny - 2j for sag integer j 

These restricticns were chosen so as to test program efficiency: 

they do not apply, in general, to the KBF Scheme. 

For each (x, y) pair, there will be Nt qle pints in time, &, 

m - 1, . . . . Nt, at which values of pressurer P(x,y,~O,hl are given. 

Nt nust also be a pwer of two. 

In equation (2.1) it is assmed that the density, pt iS CmStant 

and that the velocity function, c(x,y,z), will be provided by the 

user. For testing pxpses, velocity is given by a Fortran function 

subprogram in the co& presented in Appendix. Other forms 

representing the vehcities my be used to replace the supplied 

function. 
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2.3 nrE=m 

Given P(x, y, z-0, tl for t - o, m, m, . . ., ‘IMAX 

obtain P(x, y, zr t=O) for 2 - 0, mz, 2~2, . . . . zmx 

Equation (2 .lI is Fourier transforned with respect to the o 

assming density, p is constant. The seam3 order transformed 

equations can then be reduced to a systen of first order equations in 

the usual manner. If density Is constant, then we an write the 

folldng series of equations: 

P(x,y,z,t) = F -lP(x,y,z,w) 

KS - 4+-1P 
t 
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where 

W’ 

where 

+I 
wl . . 

l W n-1 I 

& [ !g] IL [ 3 -9 :] [ g] (2*2) 

which is of the form 

where 

(2.3) 

(2.4) 

(2.5) 
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Iht expressim gtransformd with m3pect to timP man6 that the 

fmctial6 P(XtYa ftm) are repceaented &y Diecrete Fourier 

Nt 
P(x,y,z ,tml - c Ftx,Y, Wile Be-m (2.6) 

i-l 

where 

(m-1) m for m - 1, 2, . . ..S + 1 
2 

(*(Nt+l))Ifi for m - F + 2, . . . . Nt 

P is given by the Inverse Discrete Fourier Transform: 

Nt 
(2.7) 

here 

. 2+ 
rnt 

(i - 1) for i - 1, 2, . . . . Nt +1 
3 

2+ 
rnt 

(i-(Nt + 1)) for i - * +2, 
2 

. ..I % 

. 
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L@ is the sampling interval in time; j = Jim Equation (2.6) is then 
substituted in (2.1). This results in (2.21, which nust be satisfied 

for each Wi, for i - 1, . . . . !k + 1. 
2 

Tl=b the Nt partial differential equations which provide a 

discrete approximation to (2.11, involving unknown functions 

P(x,y,z, t,) are replaced by !k +l partial differential equations 
2 

iIIVOlVing Mkn~ functions ~(X,y,Z,Wi). Note that in the transfO& 

equations, dependence on time, t, has been eliminated. 

With an appropriate approximation to 
+9+ @ 

the "classifzl" 4* order Runge-Rutta algorithn is applied to integrate 

equation (2.2) numerically in 2. The hector) amputational equaticns 

are surranarized below: 

Kl = Dz * f(z, v old) 
pz K2rm*f(z+2, void++ 

K3 -Dz l f(z + 
nz K2 
2r %ld + 2 ) 

K4 - Dx l f(z + Dz, v old + IC3) 

%ew - void + (Kl + 2K2 + 2K3 + K4) / 6 
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2.4 K8F 

The program has four n~~in subdivisions , whose tasks are summarized 

beloW: 

Part I : For each pir of (x,y) values, the corresponding 

zero-offset trace of P(x,y,O,t) tiues is converted to another "trace" 

of ~(x,y,O,w) M-lues by application of the discrete Fourier transform 

(2.7). 

Q&II: For each wi value (i=1,2,...,Nt) the F(x,y,O,wi) values 

are re-ordered into wi-slices organized either sequentially in y for 

each x, or sequentially in x for each y, as appropriate for further 

transformations. 

,l&LUX: Each wi-slice, from the transformed input cube of 

"x,yrO,wi) values (see Figure 2.1) , is developed into an (X,y,Z,Wi) 

'ube Of ~(x,y,Z,wi) values. TICS development is performed by 

integrating equation (2.2) numerically. ?he resulting P(x,y,z,wi) 

values are accunulated for all Wi for each (x,y,z) combination. Since 

all the related exponential multipliers elmit equal 1 in rrqnitude 

(see equation (2.611, this results in the generation of P(x,y,z,t=O) 

values, as required. (Note: 5 = 0) 
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k?Qk: z = 0 throughout this data cube. 

Figure 2.1 
Transformed Input C&e 

w-slice 

There are two sub-problems of Part III: 

= 
&.rJ;L: Initial values for F- Z 

are obtained by the application 

of a twc--dimensio& Fourier transform to 6 follcwed by multiplication 

by SQRrr-1 * P2 
c2 _- 

&I. Evanescent energy components are then 

eliminated and iF Z is obtained by the application of a 2-dimensional 
= 

inverse Fourier transform to F- 2. 
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part III.2: B(x,y,z,w) and F-f z x,y,z,w) are propagated fran z to z+ 

Vz using the Runge-Kutta qth order method to integrate equation (2.2) 

numerically. lb do this 

mst be approximated four times for each Vz. This is achieved ty the 

use of a two-dimensional Fourier transform, followed by multiplication 

by -(kx2 +ky2L Kvanescentenergy is eliminated frm Bby applying a 

two-dimensional Fourier transform to f;, obtaining i. For all (Kx,~) 

pairs such that Kx2 + KY2 > wi/c(x,y,z), i is set to zero. Then a 

two-dir&nsional inverse Fourier transform is applied to yield P', which 

is input to the next step of numerical integration. Evanescent energy 

isalsc rmovedfrun in the samemnner. 

Part IV: For each (x,y), the P(x,y,z,t=O) values in Part III are 

retrieved so as to be contiguous in Z. These space traces are each 

Fourier transformed and the dmngoing energy is eliminated by filtering 

out ampments with negative wave nmtbers K,. The resulting filtered 

traces are inverse Fourier transformed, retaining only the real part of 

the result, which is the desired 3D depth migration. 
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The speed and capacity of the computer available to an individual 

researcher imposes certain restrictions on the types of problems that 

can be solved. The CYE3ER 205's vector features and high sped scalar 

processor provide a tool for solving problems in a matter of minutes 

that would take on the order of days on a conventional scalar machine 

(this speed increase depends, to a considerable extent, on the degree 

to which it is possible to "vectorize" the scalar c&e). Of the 

problqs that can new be solved using the CYBER 205, the migration 

application presented here makes extensive use of the CYBER 205's 

vector facilities. This chapter contains an overview of vector 

processing on the CYEER 205 and an in-depth discussion of the data-flow 

required by the KBF migration algorithm. 
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3.2 

This section deals primarily with the concept of vector machines; 

hmever, it is not within the scope of this paper to bring the novice 

up-to-date on vector computing. Several texts and ppers have been 

written to perform that task. Hackney and Jesshope 141 present a 

comprehensive text covering vector and parallel processors as well as 

vector and parallel algorithms. Section 2.3 of Hockhey and Jesshopz 

[51 is dedicated to the CDC CYEER 205. For more information on the 

CYEER 205, see also Kascic 161. 

The CYBER 205, announced in 1980, replaced its predecessor, the 

CXXR 203. In turn, the CYBER 203, introduced in 1979, was a 

re-engineered version of the STAR 100. Conceived in 1964, the first 

STAR 100 became operational in 1973. The instruction set for the 

vector operations in the STN? 100 were based, primrily, on the AFL 

language. The STAR 100 was designed to execute at a rate of 100 

Mega-flops (1 Mega-flop = one million floating point instructions 

executed pzr second). 

340 



The CYBER 205 is a member of the family of 'pipelined" mchines. 

Pipeline refers to an assembly-line style of performing oertain 

operations: thusmore thanone set of operands can be operated upon at 

a time. The vector processor of the,CYBER 205 has what are known as 

vector pipes. These vector pipes are designed to stream contiguous 

data elements (vectors) through their pipelines. Presently, the CiBER 

205 can have as many as 'four vector pipes, all of which can operate 

concurrently. A four pipe CYBEIR 205, processing 32-bit words, can 

operate at a peak rate of 800 q-flops. 

TIie various data Qpes utilized by the CYBER Fortran 2.0 language 

include the following: 

Connnents 
-- 

: the machine is bit addressable 
Half-word : 32-bit floating point 
Ml-word : 64-bit floating point; 64-bit integer 
Double-precision : 128-bit floating pint 

two consecutive 64-bit words 
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VECTOR OPERATIONS AND CONSIDERATIONS 

Vectors on the CUBER 205 are "pointed to" by vector descriptors. 

A vector descriptor is,a 64-hit entity with the following two fields: 

(1) Vector length, which cmsists of 16 bits and (2) Virtual address of 

the first vector elment, which consists of the remaining 48 bits. 

Thus, a vector can have a length ranging from 0 to 65,535. Note that a 

bit vector can be no longer than 65,535 elements even though it 

consists of only 1024 64-hit memory words. 

Vector operations ame in a variety of forms on the CYBER 205, 

sune of which are displayed in Table 3.1. 

Table 3.1. Vector Operation Examples. 

DIHEXSION A(lOO), B(1001, C(100) 

L = 100 

EQUIVALEXC 
NUMBER VECTOR Q3DE SCAM? CDDE 
-- -- ---- 

(1) A(1; L) = Q8vINTL(O, 1; L) co10 I=l, L 
10 A(I) = I - 1 

(2) B(1; L) = AU; L) * 20.0 co20 I=l,L 
20 B(I) = A(I) * 20.0 

(3) C(1; L) = A(1; L)*2.O+B(l; L) In 30 I = 1, L 
30 C(I)=A(I)*2.0+B(I) 
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The examples in Table 3.1 are rather simple but resemble my 

operations in scientific programs. Examples 1 and 2 show a vector 

function call and a vector-scalar operation. Example 3 shaws a "linked 

triad” operation. A linked triad operation takes advantage of CYBER 

205 hardware which supports such operations. As one can sea in Table 

3.2, the linked triad operations are quite efficient. An operation is 

generally considered a linked triad when it consists of two vector 

operands and one scalar operand. 

In certain situations, the results of sane elements of a vector 

opration need not be saved. In this case, there is a mechanism for 

avoiding storage which involves a control vector. A control vector iS 

a bit vector that specifies the storage of vector results. The control 

vector will be the same length as the result vector and where it has a 

value of one the corresponding result vector element will be saved and 

where it has a value of zero the corresponding result vector element 

will not be saved. The programmer also has the choice of reversing the 

meaning of the one's and zero's in the control vector. 

A certain mnber of clock cycles are needed to set up the vector 

pipes. As this setup time is constant for a given operation, it is 

mre efficient, in terms of total execution time, to reduce the number 

of vector operations by increasing the vector lengths whenever 

pssible. Table 3.2 shows the set-up times, as well as the timings for 

the actual operations for various operations on the CYBER 205. 
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Table 3.2. Vector Timing Information 

Numhx of Numberof 
Vector Instruction Set-up Cycles Operating Cycles 

--- I-- 

Addition, Subtraction 51 N/4 

Multiplication 52 N/4 

Division, Square root 80 N / .61 

Linked triad 84 N/4 

Where: 
N= Vector length 
1 Cycle =2onano-seconds 
The vector operations are on 32-bit words 
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The XBF migration technique is such that ahxt all of the 

necessary operations can be vectorized. When working with a pxticular 

u-slice, all of the cperations, including the two-dimensional FTPs, 

are vector operations. T%e ccxnputations performed at my given pint 

of the artega-slice must te performed at all of the points. If there is 

a certain criteria that causes saxthing different to occur at a given 

ancqa-slice pint, a Wntrol vector czlll be created, dynamically, and 

the operation cM still be performed in a vector manner. An example of 

this rrq be found in the routine cu?DFF where the evanescent energy is 

elhinated, In 6-2~~ there is no 

prticular opzration in the KBF migration scbene that can not be 

treated as a vector opxation. To en@size this paint, one should 

examine the technique pesentcd In chapter 2 and notice that there are 

no tricky operations that would prevent vectorization. In prticular, 

it is imprtant to note that there are no operations that have the 

follahq structure: 

W 100 I = 1, N 
X(I) - F(Y(I)) 
IF (X(I) .LT. VALJ 00 T0 200 

100 awrTNuE 
200 Q3NTINuE 

The above wde can not be efficiently vectorized hcaum of the 

inherently quential Mture of the axnptations. 
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As previously discussed, a program iqlementing the KBF migration 

technique, extended into three dimensions, is easily expressed in terms 

of vector operations. !%e program developed here contains very few 

scalar operations, rmny of which are operations needed in order to 

control various vector instructions or vector subroutine calls. Having 

such a match of software to hardware, one might conclude that there are 

no retraining barriers to running the program. There are, tiever, a 

few major items that one tends to overlook, being overwhelmed by the 

computational per of the CYBER 205. The greatest of these is the 

data motion required to keep the (,‘yBm 205 vector pipes busy. 

One penalty for the use of vector operations is that the data must 

be contiguous in memory for greatest efficiency (let alone for scme 

vector operations to run at all). Furthermore, the vectors must reside 

in main memory as much as pssible in order to prevent sure death fran 

thrashing. With this in mind, one must realize that the memory 

requirement for the vectors that are necessary to perform a single step 

of the integration of one omega slice is quite large. For example, a 

(256 by 256) ccanplex XY plane will require eleven vectors of length 

131,072 half-words. These,. along with various suprt vectors, 

arnprise 12 large pages (1 large page = 65,536 full-words). This is 

slightly less than half of the memory available to a user on a 
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2-msgaword 205, however it is about all one can expect to get for any 

reasotile'period in a time-sharing envirornnent. But ,this' is really 

just the tip of the iceberg - these are just the work arrays. The 

total data set consists of the input data cube, the work arrays,- and 

the output data cube. 

Continuing with the previous example, the input cube could very 

well be of size 256*256*1024 half-words and the output cube could be as 

much as twice the size of the input cube (the size of the output cube 

depends upon the number of ZSTEXS in the migration). This would be a 

total of 201,326,592 half-words, which is equivalent to 1536 large 

Fag= l 
obviously, this is much more data than any CYBER 205 can have 

in memory at any given tin-e. Consequently, the question of how to 

handle the data-flew arises. A solution that one may consider is to 

declare the data cubes to be huge arrays and to let the virtual rrunory 

mechanism handle the data cubes. 

To consider declaring the two data cubes as arrays, one must 

realize that access to these two arrays would have to be in a 

contiguous manner. Otherwise severe thrashing would result. In the 

case of the KBF migration algorithm, access to the data cubes must be 

done in several ways that would break the rule of contiguous access. 

!mls, it would be wise to check into at least one alternate ~thod of 

handling these data cubes as large arrays. 
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Before presenting the data motion n-&hod used in this study, the 

need for efficiency must be established. Ccntinuing with the previous 

example and without discussing the code in detail, the subroutine RHS3 

takes on the order of 100 milli-seconds to run, each time it is called. 

In this example, RHS3 would be called on the order of 4*512*512 

(1,048,576) times. The tin-e needed for all of these calls is 

approximately 29 hours. Thus, any tin-e for performing the data-motion 

is added onto the 29 hours. Therefore, one needs to find a mechanism 

to perform the data-motion without making the program run for an 

unacceptable amount of time. 
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CXBEZ? 205 Fortran provides several routines that my be used to 

implment I/O that runs concurrently with other instructions being 

executed as well as with other I/O. These routines include QIBUFIN, 

Q-IBUKXJT, andQ7WAIT. For detailed information on these routines, see 

the CDC CYBER 200 EURTPAN VERSION 2 m.1~1 t71. A typical use for 

these routines would be as follows: 
. 
. 

CALL Q7BUF&JTL..............) 
CALL hoRK( . . . . . . . . . . . . 1 

. 

. 

. 

In this example where the programmr wishes to write information 

out to a unit and have the routine KlRK run amcurrently with the I/O. 

In general, as long as KRK does not use the I/O unit referred to in 

the Q7BUFCUT call, it can dc anything it wishes. Thus, there is CPU 

activity concurrent to I/O activity. 

Another example where two I/O requests cause concurrent I/O, is as 

follms: 
. 
. 

CALL Q7BUF;NL.............) 
CALL, Q7BUFWT(..............) 

. 

. 

. 
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According to the UX CYBER FORTRAN 2 mual 181, these calls are 

1-t so long as they do not access the same data block on the same 

disk. Also, twoQ7BUFIN, two Q7BUEWT calls, or a Q7BUFIN and a 

Q7EWEWT call can be active at one tirrre for a given unit. 

It should be obvious that these "47" calls are the basis of a 

solution to the problem of data-flow that was presented in the previous 

section. Indeed, they are: yet they are only the basis of the method 

used in this study. Dr. Bjorn Mossberg 191, of Control Data 

Corporation, wrote a utility kna~n as SLICEI. Mossberg used the "Q7" 

utilities; hmever, the scheme he developed is much mxe elaborate 

than a series of Q7 calls to a prticular I/O unit. 

It is not within the scope of this pper to duplicate Mossberg's 

documentation of SLICEI. Hcwever, the concept and the terminology of 

SLICE4 will be presented as it applies to this study. For efficient 

operation, SLICE4 must tx tightly integrated into the master program. 

merefore, its terminology affects the view that one takes of the 

mster program. 

In this study, two im@mentations of SLICE4 wereneededand used; 

one for the input data cube and one for the output data cube. To 

explain the use of !ZLICE4, only the input data cube will be treated. 

The output data cube is'handled in a similar mer. 
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The first step in using SLICE4 is to -se a coordinate system 

upon the data cube such thatthecube is NI by N2 by N3 elements in 

size, where Nl is the number of elements in what one normally considers 

the 2 direction, N2 is the n&r of elements in the X direction, and 

N3 is the nlrmber of elements in the Y direction. The next step is to 

define a second coordinate systen on the data cube. Instead of being 

coordinates of individual data items, this second coordinate system 

gives coordinates of "super-blocks.' Super-blocks are small cubes of 

the original data set. The super-block coordinate system has Ml 

super-blocks in the l-direction, E62 in the 2-direction, and NS3 in the 

3-direction, where Nsl and NS2 must be multiples of four. E3 does not 

have this restriction; however, for greatest efficiency, it should be 

one or a multiple of four. The reason for the multiple of four rule is 

that the super-blocks will reside on four different I/O units. M 

matter which direction the cube is accessed, each I/O unit will have 

one quarter of the super-blocks accessed. This is not the case when 

only a prtial row or column of super-blocks is accessed; thus, it is 

most efficient to access a complete rem or column. If it shouldhappen 

that mOre than one I/O unit be controlled by a given controller, then 

SLICE-4 will still execute, but in a less efficient manner (i.e. the 

parallelism is prtially inhibited). Thus, one may access any four 

adjacent super-blocks at a cost which is one fourth the ast of 

accessing the same data with conventional techniques. 
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The super-blocks thenselves have a coordinate structure imposed 

upon them. This coordinate structure is LJ by I2 by W. Where Ll is 

the n&r of elements fran the data cube in the l-direction: X2 and 

L3 are defined in the sama manner for their individual directions. 

Summarizing the terminology presented so far, the original data 

cube is broken up into El by E2 by NS3 super-blocks. Each 

super-block has LJ by L2 by W data elements. Thus the follming rules 

must apply: 

N =N!31*Ll with E1=4*i, i=> 1 

z 
=IS2*L2 with E2=4*jr j => 1 
=NS3*L3 

The rows and columns of super-blocks are referred to as slices. A 

l-slice is some column of super-blocks in the l-direction, a 2-slice is 

scnne row of super-blocks in the 2-direction, and a 3-slice is scme row 

of super-blocks in the 3-direction. One may access all, or just sax, 

of the super-blocks of a slice via SLICE4. However, in this study, 

only the most efficient access is lzerformed - accessing all 

supx-blccks of a given slice. As access can be by any given slice, 

SLICE4 must have the super-blocks allforrnattedin the samernanner. 

Thus, when accessing a given slice, the slice is written into a buffer 

by SLICE4 and the user must re-formatthedata frcan the buffer intoa 

work array in the format that correspxds to the direction of access. 
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One needs to be careful to have enough array and buffer space to 

access the data cube in all the necessary directions. Thus, the size 

of the super-block cmes into question. The 'larger the super-block, 

the fewer accesses to the data cube are needed and vita versa. In this 

study, the LJ dimension was set permanently to the value of 2. The 

reason for this is that, as one recalls fran the migration technique, a 

complete XY plane is processed at arry given time and there is only 

enough rmmxy space to have two input planes in memory at the same 

time. 
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As discussed in secticrr 3.4, it would take over 29 hours of 

executicm time to migrate the maximum (assumed) data cube; thus for 

testing prpses, an inpt cube of size (64x64~~641 MS used. For both 

of the test runs discussed here, all of the traces consisted ampletely 

of zeros, except the center trace that had a single wavelet peaking at 

wle 16 (in tine). l%e ccrrectly migrated result, in this case, 

consists of a ht&sphere. The first run (Figures 1 md 2) incorporated 

a padding in the time direction to &lay the wraparound effect 

inherent in Fourier algorithms. The second run (Figures 3 and 4) did 

not incorporate a @ding - thus, wraparound effects apeared. The 

first run took 240 CR1 seccnds and the second run took 115 CFU seconds. 

w: The migraticn of the input cube described above, 

using a constant velocity of 3000 m/s, a Dz interval of 6.0 mters, a 

DX interval of 12.0 mters, a Dy interval of 12.0 ureters, and a time 

interval of 4 .O milli-seconds, yields the results shown in Figures 1 

and 2. Figures 1 and 2 are slices of the outprt cube in the X2 and in 

the YZ directions, respectively, intersecting at the oenter of the 

output cube Wte the absence of the wrap-around effect). 
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J&L&xQ: The migration of the same inprt cube used in Test Run 

1 using tne same sampling rates in all dimksions, but with a velocity 

interface (see Figure 3; VI = 4000 m/k; V2 - 3000 m/s), yields the 

results displayed in Figures 3' and 4. Note the wraparound effect 

present in these figures. 

4.2 S-spT.FaDF 

Until a superior algorithm for performing the I/O required by the 

KBF migration algorithm appears, SLICE4 will remain the most efficient 

method available to perform the I/O task. -ever, should a CYBER 205 

ever lx equipped with 8, or even 16, I/O channels, SLICE4 should easily 

be adapted to create SLICE8 and SLICE16 versicns. Until then, there is 

little chance of decreasing the tima required to perform the I/O. 

Other than I/O, the Runge-Kutta 4* order algorithm emplqed in 

the KBF migration technique is the most expensive feature. 

Consequently, use of a less costly method for numerical integration 

(e.g., a nailti-point method, using the Runge-Kutta method t0 get 

started) might result in increased cunputational efficiency. 

The 3D KBF migration program, implemented on the CYBER 205 

Suparcanputer presented in this thesis, yields results that are 

consistent with those of Kosloff and Baysal [lOI. This was confinned 

by Kosloff [ill. Thus, a 3D migration programr using the KBF migration 

technique based on the full acoustic wave equation) permitting lateral 

velocity variations is new available for use on the CYBER 205. 
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Vectorization of a Penalty Function Algorithm for tie11 Scheduling 

Ilyas Absar 

SOHIO Petroleum Co. 

San Francisco,California 

Abstract: 

In petroleum engineering, the oil production profile of a reservoir can be 

simulated by using a finite grided model. This profile is affected by the 

number and choice of wells which in turn is a result of various production 

limits and constraints including, for example, the economic minimum well 

spacing, the number of drilling rigs available and the time required to drill 

and complete a well. After a well is available it may be shut-in because of 

excessive water or gas productions. In order to optimize the field 

performance a penalty function algorithm was developed for scheduling wells. 

For an example with some 343 wells and 15 different constraints, the 

scheduling routine vectorized for the Cyber 205 averaged 560 times faster 

performance than the scalar version. 
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Introduction: 

ldlathematical nodelling of the fluid production from a naturally occurring 

reservoir involves considering the reservoir as a network of interconnected 

blocks. To each grid block is associated a ijeologic description through 

properties, e.g., thickness, porosity, permeability, etc. Each grid block is 

considered to be in material balance with its surroundings, i.e., the amount 

of fluid in the block at time t +At is equal to the amount of fluid in that 

1 At minus fluid outflux block at time t plus fluid influx in the time interva 

in the time intervalAt. 

In Figure lA, the reservoir is shown by a curved boundary. Overlaid 

areally is a rectangular grid. The sizes of the blocks can be chosen to 

represent the geological features of the reservoir as accurately as possible. 

Figure 18 shows a two dimensional cross-section of a reservoir and the yrid 

used for its simulation. Notice that the reservoir contains water, oil and 

sas in various regions, and only some blocks are in communication with the 

wells by means of perforations in the well bore. To simulate the production 

profile, the material ba7ance of the grid blocks in which wells are perforated 

must also take into account the fluid production or injection. In this manner 

one obtains pressures and saturations for each of the yrid-blocks. For 

details on mathematical modelling of oil reservoirs please refer to a standard 

text, for example, references 1 and 2. 

Once a reservoir simulator is formulated, it can be used in many ways, 

e.g.: 

1. Assist in makiny economic decisions for field operation, e.g., the 

investments to date at Prudhoe say exceed $9 billion. 

2. Desiyn of production strategy. The effect of changes in the number, 

location, spacing, or timiny of wells can be studied. 

3. Prediction of reservoir performance. 

4. iilatchiny of the production history. 
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When an oil field is developed, of course the most important objective is 

to maximize oil recovery. However, this objective is tempered by limitations, 

economic and physical, e.g., costs and capacities of various installations and 

devices. 

The dashed curve in Figure 2 represents oil production when all wells 

flow at their maximum capacity. The area under this curve represents 

cumulative oil production. The ratio of cumulative oil production to in-place 

oil represented as a fraction or percentage is called the Oil Recovery 

Factor. If facilities were constructed for this production profile, they 

would have to be constructed to handle oil production at the maximum rate, 

q max. Economic considerations give us a target oil rate, qy, less than qmax, 

at which oil production can be sustained for a period of time. The solid 

curve in Figure 1 represents this strategy. Note that sometimes this can be 

achieved without appreciable sacrifice in cumulative oil production. 

Well Scheduling Problem: 

Once qt is established, the problem of optimal scheduling, i.e., selecting for 

operation a given number of wells (say n) can be represented mathematically as 

follows: 

Maximize, n 

r. qi4qT 
i=l 

The waximun production rates of oil, gas and water are, however, limited to 

the capacity of the reservoir facilities. Thus, the field oil production is 

subject to constraints of the form: 

c Xiqi 6 L 
i 
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Suppose (k-l 1 we 11s have been already chosen. 

For choosing the k th well subject to a constraint of the form: 

where, 

qi is the oil production rate from well i, 

% is the target oil production rate for the field, 

xi is either 1 or the gas-oil ratio or the water-oil ratio for well i, 

xioi is then the oil or gas , or water production/injection rate. 

and L is the oil or gas or water production of injection constraint. 

Some examples of these limits are: 

1. Fieldwide gas handling capacity, 

2. Water injection limit, 

3. Oil production limit at a station due to pipeline size, 

4. Gas-lift capacity available. 

In order to select wells for production, each well can be assigned a 

priority. In the penalty function approach priority assignment, is made with 

a function which becomes large as a particular constraint approaches violation, 

a simple penalty function is: 

k-l 

p(k) = (zxiqj + Xkqk)/ L 

i=l 

The penalty function p(k) has a value for each of the available wells, 

and arranyes the set of available wells in order according to this particular 

constraint. 
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When there are several (say m) constraints, penalty functions pi(k), 

pz(k) ---pm(k) can be obtained similarly. 

Since each constraint is individually fatal for well scheduling purposes, 

the violation of one constraint is as bad as any other. 

Hence, an overall penalty function can be of the form: 

p(k) = max P j 
j=l . . . m 

Results and Discussion: 

The implementation of this scheme involves calculating for each available 

well, m different pi (k) and then obtaining an overall penalty, p(k) as the 

maximum of these m values. Thereafter the well with the lowest value of p (k) 

is selected. This procedure is repeated selecting one well at a time until 

the target rate q is achieved without violating any of the constraints. If 

the target rate cannot be achieved without violating one or more constraints, 

we are on the decline portion of the production curve. 

This scheme was programmed into a three dimensional, three phase (oil, 

gas, water) simulator. The simulator originally used a simple prioritization 

scheme based on gas-oil ratios. When a scalar version of the penalty function 

algorithm was introduced, the simulator ran appreciably slower. It was 

therefore decided to vectorize the penalty function algorithm. 

TO calculate the penalty function in a case with n wells and m 

constraints declare an array p (n, ml). Usually n is much greater than m. 

For each of the m constraints vectorize the penalty calculation, e.g., 

for constraint i, store the values of pi(k) in the elements of p (n, m), 

starting with p (1, i) and ending at p (n, i). 

Next, using a WHERE comparison statement pick out the largest of the m 

values for each well. We now have the priority p (k) for each well. Use the 
il8SnINI call to pick out the minimum value. If this value exceeds l., no well 

can be chosen without violating a constraint. 
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TABLE 1, 

No. of wells 

Case 1 

115 

Case 2 

343 

No. of constraints 9 15 

Average Well 

Selection Time (sees) 

Scalar: 

Vector: 

Scalar: Vector 

Ratio 

112 

.14 1.6 

.001245 .00287 

560 

A summary of results for two cases is presented in Table 1. For a 

reservoir with 119 wells and nine constraints, the vector algorithm was on the 

average 112 times faster than the scalar version. For a larger example, Case 

2 in Table 1, 343 wells with 15 constraints, the vector algorithm achieved 

even more spectacular results, an average acceleration factor of 560. 

The details of Case 1 are represented graphically in Figure 3. In the 

scalar algorithm, the time required for selection of wells increases 

monotonically for each subsequent selection. The selection of the first well 

required only .005 sets while the selection of the 65th well required .226 

sets. However, in the vector algorithm, each well selection required .001244 

sets, except for the first, which required .00155 sets. 

Similarly, for Case 2, the vector algorithm took .00287 sets for each 

bdell selection, except for the first well, for which it took .00447 sets. The 

scalar algorithm had a monotonic increase from .0185 sets for the first well, 

to 2.647 sets for the 220th. we77. This means that the selection of the 220th 

well was some 920 times faster in the vector algorithm as compared to the 

scalar version. 

366 



- 

Conclusions: 

Clearly as the number of wells and the number of constraints increase, 

the advantage of the vectorized version over the scalar version becomes 

yreater. 

The reservoir simulator with the vectorized well selection scheme, 

including the more complicated penalty function scheme, ran faster than the 

original version with the simpler scalar well selection scheme. 

In short, judicious use of vectorization can make feasible highly 

desirable enhancements to larye simulators. 

References: 

1. D. W. Peacemain, Fundamentals of Numerical Reservoir Simulation, Elsevier 

Scientific Publishing Company, R.Y., 1977 

2. K. Aziz and A. Settari, Petroleum Reservoir Simulation, Applied Science 

Publishers Ltd., London, 1979 

367 



FIGURE 1 A. 
RECTANGULAR GRID TO REPRESENT 
A RESERVOIR. EACH BLOCK MAY 
HAVE DIFFERENT THICKNESS AND 
POROSITY. 

GA 

--WI I ml 
WATER 

\ 

FIGURE 1 B. WATER 

CROSS-SECTION OR A GRID WITH 
DIFFERENT TYPES OF WELLS. 

368 



OIL 
P PRODUCTION A 

RATE RATE 

9 9 max - max - --------- --------- 
/ \ I\ 

/ -\ \ 
// \ 

1’ 
\ 

\ 

9, --- .-! 

/ 
I 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

TIME - 

FIGURE 2. 

PRODUCTION PROFILE FOR AN OIL FIELD. 

369 



SELECTION 
TIME 

(SEC.) 

.22 

.20 

18 

.18 

.14 

.12 

.lO 

.08 

.08 

.04 

.02 

c 

. 
. 
. 

F 

. 

. 

. . 

. 

VECTOR 
I I I I I I I b 

6 10 20 30 40 50 80 70 80 90 100 
SEQUENCE NUMBER 

FIGURE 3. 

aU.S.COVERNME~PPRINTINGOFFICE:19~4-739-Ol(Y 59 REGION NO. 4 

370 



BIBLIOGRAPHIC DATA SHEET 

1. Report No. 
NASA CP-2295 

2. Government Accession No. 3. Recipient’s Catalog No. 

4. Title and Subtitle 

CYBER 200 Applications Seminar 

7. Author(s) 
J. Patrick Gary, Compiler 

?. Performing Organization Name and Address 

Goddard Space Flight Center 
Greenbelt, Maryland 20771, with 

Control Data Corporation 
Minneapolis, Minnesota 55440 

12. Sponsoring Agency Name and Address 

National Aeronautics and Space 
Administration 
Washington, D.C. 20546 

5. Report Date 

March 1984 
6. Performing Organization Code 

935 
8. Performing Organization Report No 

84~5215 
10. Work Unit No. 

11. Contract or Grant No. 

13. Type of Report and Period Coverer 

Conference Publication 
October 10-12, 1983 

- 14. Sponsoring Agency Code 

15. Supplementary Notes 

16. Abstract 

This document contains the proceedings of the CYBER 200 
Applications Seminar, hosted by Goddard Space Flight Center 
with Control Data Corporation, held on October 10-12, 1983. 
The seminar was attended by more than 100 participants, 
including representatives from the United Kingdom Meteoro- 
logical Office and CSIRO in Australia, four other countries, 
fifteen U.S. universities, ten Federal research centers, and 
numerous private industries. The subjects covered included 
application topics in Meteorology/Oceanography, Chemistry, 
Math Algorithms, Fluid Dynamics, Monte Carlo Methods, 
Petroleum, Electronic Circuit Simulation, Biochemistry, 
Lattice Guage Theory, Economics, and Ray Tracing. This 
document is comprised of the majority of the papers presented 
at the seminar. 

;7. Key Words (Selected by Author(s)) 

Vector Processing 
Numerical Techniques 
Supercomputers 
Vectorization 

18. Distribution Statement 

STAR Category 61 
Unclassified-Unlimited 

9. Security Classif. (o’f this report) 20. Security Classif. (of this page) 

Unclassified Unclassified 
----p- 

1 --- . . . .- _. ^ . . . . . ,._ ^ e., "1 ,.A.,.. 

_. - 


